Reference

This is the class and function reference of cycompsense. Please refer to the tutorial for further details, as the class and function raw specifications may not be enough to give full guidelines on their uses.

operators

The classes defined in this module, implement different operators that operate on input signals. These operators are used for defining problems. opBase should be subclassed for creating new operators.

compsense.operators.opBase(name, shape[, ...]) Base class for operators
compsense.operators.opMatrix(A) Operator that wraps a simple matrix.
compsense.operators.opBlur(shape) Two-dimensional blurring operator.
compsense.operators.opRandMask(shape, fill_ratio) Random binary mask.
compsense.operators.opWavelet(shape[, name, ...]) Wavelet operator.
compsense.operators.opDirac(shape) Identity operator
compsense.operators.opFoG(operators_list) Concatenate a sequence of operators into a single operator.
compsense.operators.opFFT2d(shape) Two-dimensional fast Fourier transform (FFT) operator.
compsense.operators.opDCT(shape[, axis]) Arbitrary dimensional discrete cosine transform (DCT).
compsense.operators.op3DStack(operator, dim3) Extend an operator to process a stack of signals.

problems

A set of problems for testing and benchmarking algorithms for sparse signal reconstruction. problemBase should be subclassed for creating new problems.

compsense.problems.problemBase(name[, noseed]) Base class for all CS problems. The problems follow
compsense.problems.problemBase.reconstruct(x) Reconstruct signal from sparse coefficients
compsense.problems.probCustom(A, b[, x0, name]) This class allows the user to define his own problem object based on the problem matrices.
compsense.problems.prob701([sigma, ...]) GPSR example: Daubechies basis, blurred Photographer.
compsense.problems.probMissingPixels([...]) RandomMask example: Wavelet basis, masked Photographer.

algorithms

A set of reconstruction algorithms.

compsense.algorithms.algorithmBase(name, P) Base class for algorithms
compsense.algorithms.algorithmBase.solve([...]) Solve the problem
compsense.algorithms.TwIST(P, tau[, ...]) Two-step Iterative Shrinkage/Thresholding Algorithm for Linear Inverse Problems.
compsense.algorithms.TwIST_raw(y, A, tau[, ...]) Two-step Iterative Shrinkage/Thresholding Algorithm for Linear Inverse Problems.

Table Of Contents

Previous topic

Tutorial

Next topic

compsense.operators.opBase

This Page