This class allows the user to define his own problem object based on the problem matrices.
Examples
>>> m, n = (20, 40)
>>> sigma = 0.001
>>> A = np.random.randn(m, n)
>>> x = np.random.randn(n, 1)
>>> x[np.abs(x)<0.5] = 0
>>> b = np.dot(A, x) + sigma * np.random.randn(m, 1)
>>> P = probCustom(A=A, b=b, x0=x) # Creates a custom problem.
Parameters : | A : array or instance of problemBase subclass,
b : array like,
x0 : array like, optional (default=None)
name : string, optional (default=’custom’)
|
---|
Attributes
A | Response of the problem |
B | Base matrix |
M | Sampling matrix |
b | Observation vector |
name | Name of the problem |
signal | Signal (Not in sparsifying basis) |
signal_shape | Shape of the signal |
x0 | Solution to problem |