compsense.problems.prob701

class compsense.problems.prob701(sigma=0.0055242717280199029, undecimated=False, noseed=False)[source]

GPSR example: Daubechies basis, blurred Photographer. prob701 creates a problem structure. The generated signal will consist of the 256 by 256 grayscale ‘photographer’ image. The signal is blurred by convolution with an 9 by 9 blurring mask and normally distributed noise with standard deviation SIGMA = 0.0055 is added to the final signal.

References

Examples

>>> P = prob701()   # Creates the default 701 problem.
Parameters :

sigma : float, optional (default=sqrt(2)/256)

Standard deviation of the additive noise.

undecimated : bool, optional (default=False)

Use undecimated wavelet transform

noseed : bool, optional (default=False)

When True, the initialization of the random number generators is suppressed

Attributes

A Response of the problem
B Base matrix
M Sampling matrix
b Observation vector
name Name of the problem
signal Signal (Not in sparsifying basis)
signal_shape Shape of the signal
x0 Solution to problem

Previous topic

compsense.problems.probCustom

Next topic

compsense.problems.probMissingPixels

This Page