RandomMask example: Wavelet basis, masked Photographer. probMissingPixels creates a problem structure. The generated signal consists of the 256 by 256 grayscale ‘photographer’ image. A random binary mask is applied to the signal creating ~40% missing pixels and a ormally distributed noise with standard deviation SIGMA = 0.0055 is added to the final signal.
Examples
>>> P = probMissingPixels() # Creates the default problem.
| Parameters : | fill_ratio : float, optional (default=0.6)
sigma : float, optional (default=sqrt(2)/256)
wavelet : str, optional (default=’db2’)
undecimated : bool, optional (default=False)
wavelet_levels : int, optional (default=None)
noseed : bool, optional (default=False)
|
|---|
Attributes
| A | Response of the problem |
| B | Base matrix |
| M | Sampling matrix |
| b | Observation vector |
| name | Name of the problem |
| signal | Signal (Not in sparsifying basis) |
| signal_shape | Shape of the signal |
| x0 | Solution to problem |