RandomMask example: Wavelet basis, masked Photographer. probMissingPixels creates a problem structure. The generated signal consists of the 256 by 256 grayscale ‘photographer’ image. A random binary mask is applied to the signal creating ~40% missing pixels and a ormally distributed noise with standard deviation SIGMA = 0.0055 is added to the final signal.
Examples
>>> P = probMissingPixels() # Creates the default problem.
Parameters : | fill_ratio : float, optional (default=0.6)
sigma : float, optional (default=sqrt(2)/256)
wavelet : str, optional (default=’db2’)
undecimated : bool, optional (default=False)
wavelet_levels : int, optional (default=None)
noseed : bool, optional (default=False)
|
---|
Attributes
A | Response of the problem |
B | Base matrix |
M | Sampling matrix |
b | Observation vector |
name | Name of the problem |
signal | Signal (Not in sparsifying basis) |
signal_shape | Shape of the signal |
x0 | Solution to problem |