Two-step Iterative Shrinkage/Thresholding Algorithm for Linear Inverse Problems. Solves the regularization problem
where is a generic matrix and
is a regularizarion
function such that the solution of the denoising problem
is known.
For further details about the TwIST algorithm, see the paper:
J. Bioucas-Dias and M. Figueiredo, "A New TwIST: Two-Step
Iterative Shrinkage/Thresholding Algorithms for Image
Restoration", IEEE Transactions on Image processing, 2007.
and
J. Bioucas-Dias and M. Figueiredo, "A Monotonic Two-Step
Algorithm for Compressive Sensing and Other Ill-Posed
Inverse Problems", submitted, 2007.
Parameters : | P : instance of a subclass of problemBase
tau : float,
psi_function : function handle, optional
phi_function : function handle, optional
lam1 : float, optional (default=0.04)
alpha : float, optional (default=calculated as function of lam1)
beta : float, optional (default=calculated as function of lam1)
stop_criterion : {0, 1, 2, 3}, optional (default=0)
tolA : float, optional (default=0.01)
debias : bool, optional (default=False)
tolD : float, optional (default=0.0001)
maxiter : int, optional (default=1000)
miniter : int, optional (default=5)
maxiter_debias : int, optional (default=5)
miniter_debias : int, optional (default=5)
enforce_monotone : bool, optional (default=True)
sparse : bool, optional (default=True)
Verbose : bool, optional (default=False)
|
---|
Attributes
P | The problem that the algorithm is set to solve |
mses | The statistics of the MSE per iteration. |
name | Name of the algorithm |
objectives | The statistics of the objective value per iteration. |
times | Time per iteration. |