y : array,
1D vector or 2D array (image) of observations.
A : {array, function handle},
tau : float,
regularization parameter, usually a non-negative real
parameter of the objective function (see above).
psi_function : function handle, optional
handle to denoising function (the default is soft threshold)
phi_function : function handle, optional
handle to regularizer needed to compute the objective function.
(the default = )
lam1 : float, optional (default=0.04)
parameter of the TwIST algorithm:
Optimal choice: lam1 = min eigenvalue of : .
If min eigenvalue of equals 0, or unknwon,
set lam1 to a value much smaller than 1.
Rule of Thumb:
- lam1=1e-4 for severyly ill-conditioned problems
- lam1=1e-2 for mildly ill-conditioned problems
- lam1=1 for A unitary direct operators
Note
If max eigenvalue of : > 1,
the algorithm may diverge. This is to be avoided
by taking one of the follwoing measures:
- Set enforce_monotone=True (default)
- Solve the equivalenve minimization problem
where ensures that max eigenvalue of : .
alpha : float, optional (default=calculated as function of lam1)
parameter alpha of TwIST (see ex. (22) of the paper)
beta : float, optional (default=calculated as function of lam1)
parameter beta of twist (see ex. (23) of the paper)
AT : function handle, optional
function that implements the multiplication by the conjugate
of A, when A is a function handle. If A is an array,
AT is ignored.
stop_criterion : {0, 1, 2, 3}, optional (default=0)
type of stopping criterion to use
- stop_criterion=0 algorithm stops when the relative
change in the number of non-zero components of the estimate falls
below tolA
- stop_criterion=1 stop when the relative
change in the objective function falls below tolA
- stop_criterion=2 stop when the relative norm of the difference between
two consecutive estimates falls below tolA
- stop_criterion=3 stop when the objective function
becomes equal or less than tolA.
tolA : float, optional (default=0.01)
debias : bool, optional (default=False)
debiasing option
Note
Debiasing is an operation aimed at the
computing the solution of the LS problem
where : is the submatrix of A obatained by
deleting the columns of A ``corresponding of components
of ``x set to zero by the TwIST algorithm
tolD : float, optional (default=0.0001)
stopping threshold for the debiasing phase.
If no debiasing takes place, this parameter, is ignored.
maxiter : int, optional (default=1000)
maximum number of iterations allowed in the
main phase of the algorithm.
miniter : int, optional (default=5)
minimum number of iterations performed in the
main phase of the algorithm.
maxiter_debias : int, optional (default=5)
maximum number of iterations allowed in the
debising phase of the algorithm.
miniter_debias : int, optional (default=5)
minimum number of iterations to perform in the
debiasing phase of the algorithm.
init : {0, 1, 2, array}, optional (default=0)
must be one of
- init=0 Initialization at zero.
- init=1 Random initialization.
- init=2 initialization with :
.
- init=array initialization provided by the user.
enforce_monotone : bool, optional (default=True)
enforce monotonic decrease in f.
sparse : bool, optional (default=True)
Accelarates the convergence rate when the regularizer
is sparse inducing, such as : .
true_x : array, optional (default=None)
if the true underlying x is passed in this argument,
MSE evolution is computed
Verbose : bool, optional (default=False)
work silently (False) or verbosely (True)
|