FSL diffusion preprocessings¶
[+ show/hide code]Objective
We propose to correct some distortion of a diffusion sequence: Motion Correction - Eddy Currents Correction - Susceptibility Artifacts Correction (not tested yet)
Import¶
First we load the function that enables us to access the toy datasets
from caps.toy_datasets import get_sample_data
From capsul we then load the class to configure the study we want to perform
from capsul.study_config import StudyConfig
Here two utility tools are loaded. The first one enables the creation of ordered dictionary and the second ensure that a directory exist. Note that the directory will be created if necessary.
from capsul.utils.sorted_dictionary import SortedDictionary
from caps.dicom_converter.base.tools import ensure_is_dir
Load the toy dataset¶
We want to perform BET on a diffusion sequence. To do so, we use the get_sample_data function to load this dataset.
See also
For a complete description of the get_sample_data function, see the Toy Datasets documentation
toy_dataset = get_sample_data("dwi")
The toy_dataset is an Enum structure with some specific elements of interest dwi, bvals, bvecs that contain the nifti diffusion image ,the b-values and the b-vectors respectively.
print(toy_dataset.dwi, toy_dataset.bvals, toy_dataset.bvecs)
Will return:
/home/ag239446/git/nsap-src/nsap/data/DTI30s010.nii
/home/ag239446/git/nsap-src/nsap/data/DTI30s010.bval
/home/ag239446/git/nsap-src/nsap/data/DTI30s010.bvec
We can see that the image has been found in a local directory
Processing definition¶
Now we need to define the processing step that will perform the diffusion preprocessings.
fsl_preproc_pipeline = FslDiffsuionPpreprocessings()
It is possible to access the ipeline input specification.
print(fsl_preproc_pipeline.get_input_spec())
Will return the input parameters the user can set:
INPUT SPECIFICATIONS
do_motion_correction: ['Enum']
do_susceptibility_correction: ['Enum']
dw_image: ['File']
bvals: ['File']
specified_index_of_ref_image: ['Int']
bvecs: ['File']
terminal_output: ['Enum']
generate_binary_mask: ['Bool']
use_4d_input: ['Bool']
generate_mesh: ['Bool']
generate_skull: ['Bool']
bet_threshold: ['Float']
magnitude_file: ['File']
phase_file: ['File']
complex_phase_file: ['File']
We can now tune the pipeline parameters. We first set the input dwi file and associated b-values and b-vectors:
fsl_preproc_pipeline.dw_image = toy_dataset.dwi
fsl_preproc_pipeline.bvals = toy_dataset.bvals
fsl_preproc_pipeline.bvecs = toy_dataset.bvecs
We activate the motion correction
fsl_preproc_pipeline.do_motion_correction = "YES"
And desactivate the susceptibility correction
fsl_preproc_pipeline.do_susceptibility_correction = "YES"
Study Configuration¶
The pipeline is now set up and ready to be executed. For a complete description of a study execution, see the Study Configuration description
preproc_working_dir = os.path.join(working_dir, "fsl_preproc")
ensure_is_dir(preproc_working_dir)
default_config = SortedDictionary(
("output_directory", preproc_working_dir),
("fsl_config", "/etc/fsl/4.1/fsl.sh"),
("use_fsl", True),
("use_smart_caching", True),
("generate_logging", True)
)
study = StudyConfig(default_config)
study.run(fsl_preproc_pipeline)
Results¶
Finally, we print the pipeline outputs
print "\nOUTPUTS\n"
for trait_name, trait_value in \
fsl_preproc_pipeline.get_outputs().iteritems():
print "{0}: {1}".format(trait_name, trait_value)
Note
Since only the motion and eddy corrections has been selected, the unwrapped_phase_file and susceptibility_corrected_file are not specified. Thus the corrected_file output contains the motion-eddy corrected image.