This documentation is for CAPS version 0.0.1

If you use the software, please do not esitate to Report a Bug.

Coregistration Tool

[+ show/hide code]
# Pilot imports
from caps.toy_datasets import get_sample_data
from soma.study_config import StudyConfig
from soma.sorted_dictionary import SortedDictionary
from nsap.lib.base import ensure_is_dir

# Get toy dataset
toy_dataset = get_sample_data("localizer")
print toy_dataset.anatdcm

# Create
nifti_converter_pipeline = Converter_nifti()

# Print Input Spec
#print coreg_pipeline.get_input_spec()

#untar archive
converter_working_dir = os.path.join(working_dir, "converter")
ensure_is_dir(converter_working_dir)

tar_open = tarfile.open(toy_dataset.anatdcm)
tar_open.extractall(path=os.path.join(converter_working_dir,
                                      "input_data"))
tar_open.close()

#get dicom dir
dicom_dir = os.listdir(os.path.join(converter_working_dir, "input_data"))
dicom_dir = dicom_dir[0]

# Initialize pipeline
nifti_converter_pipeline.dicom_dir = os.path.join(converter_working_dir,
                                                  "input_data", dicom_dir)
nifti_converter_pipeline.fill_header = False

# Execute the pipeline
default_config = SortedDictionary(
    ("output_directory", converter_working_dir),
    ("use_smart_caching", True),
    ("generate_logging", False)
)
study = StudyConfig(default_config)
study.run(nifti_converter_pipeline)

# Print all pipeline outputs
print "\nOUTPUTS\n"
for trait_name, trait_value in nifti_converter_pipeline.get_outputs().iteritems():
    print "{0}: {1}".format(trait_name, trait_value)