"""
Basic Equations for Solid Mechanics
###################################
References
----------
.. [Gray2001] J. P. Gray et al., "SPH elastic dynamics", Computer Methods
in Applied Mechanics and Engineering, 190 (2001), pp 6641 - 6662.
"""
from pysph.sph.equation import Equation
from textwrap import dedent
[docs]class MonaghanArtificialStress(Equation):
r"""**Artificial stress to remove tensile instability**
The dispersion relations in [Gray2001] are used to determine the
different components of :math:`R`.
Angle of rotation for particle :math:`a`
.. math::
\tan{2 \theta_a} = \frac{2\sigma_a^{xy}}{\sigma_a^{xx} - \sigma_a^{yy}}
In rotated frame, the new components of the stress tensor are
.. math::
\bar{\sigma}_a^{xx} = \cos^2{\theta_a} \sigma_a^{xx} + 2\sin{\theta_a}
\cos{\theta_a}\sigma_a^{xy} + \sin^2{\theta_a}\sigma_a^{yy}\\
\bar{\sigma}_a^{yy} = \sin^2{\theta_a} \sigma_a^{xx} + 2\sin{\theta_a}
\cos{\theta_a}\sigma_a^{xy} + \cos^2{\theta_a}\sigma_a^{yy}
Components of :math:`R` in rotated frame:
.. math::
\bar{R}_{a}^{xx}=\begin{cases}-\epsilon\frac{\bar{\sigma}_{a}^{xx}}
{\rho^{2}} & \bar{\sigma}_{a}^{xx}>0\\0 & \bar{\sigma}_{a}^{xx}\leq0
\end{cases}\\
\bar{R}_{a}^{yy}=\begin{cases}-\epsilon\frac{\bar{\sigma}_{a}^{yy}}
{\rho^{2}} & \bar{\sigma}_{a}^{yy}>0\\0 & \bar{\sigma}_{a}^{yy}\leq0
\end{cases}
Components of :math:`R` in original frame:
.. math::
R_a^{xx} = \cos^2{\theta_a} \bar{R}_a^{xx} +
\sin^2{\theta_a} \bar{R}_a^{yy}\\
R_a^{yy} = \sin^2{\theta_a} \bar{R}_a^{xx} +
\cos^2{\theta_a} \bar{R}_a^{yy}\\
R_a^{xy} = \sin{\theta_a} \cos{\theta_a}\left(\bar{R}_a^{xx} -
\bar{R}_a^{yy}\right)
"""
def __init__(self, dest, sources, eps=0.3):
r"""
Parameters
----------
eps : float
constant
"""
self.eps = eps
super(MonaghanArtificialStress, self).__init__(dest, sources)
def _cython_code_(self):
code = dedent("""
cimport cython
from pysph.base.linalg3 cimport eigen_decomposition
from pysph.base.linalg3 cimport transform_diag_inv
""")
return code
[docs] def loop(self, d_idx, d_rho, d_p,
d_s00, d_s01, d_s02, d_s11, d_s12, d_s22,
d_r00, d_r01, d_r02, d_r11, d_r12, d_r22):
r"""Compute the stress terms
Parameters
----------
d_sxx : DoubleArray
Stress Tensor Deviatoric components (Symmetric)
d_rxx : DoubleArray
Artificial stress components (Symmetric)
"""
# 1/rho_a^2
rhoi = d_rho[d_idx]
rhoi21 = 1./(rhoi * rhoi)
## Matrix and vector declarations ##
# Matrix of Eigenvectors (columns)
R = declare('matrix((3,3))')
# Artificial stress in the original coordinates
Rab = declare('matrix((3,3))')
# Stress tensor with pressure.
S = declare('matrix((3,3))')
# Eigenvalues
V = declare('matrix((3,))')
# Artificial stress in principle direction
rd = declare('matrix((3,))')
# get the diagonal terms for the stress tensor adding pressure
S[0][0] = d_s00[d_idx] - d_p[d_idx]
S[1][1] = d_s11[d_idx] - d_p[d_idx]
S[2][2] = d_s22[d_idx] - d_p[d_idx]
S[1][2] = S[2][1] = d_s12[d_idx]
S[0][2] = S[2][0] = d_s02[d_idx]
S[0][1] = S[1][0] = d_s01[d_idx]
# compute the principle stresses
eigen_decomposition(S, R, cython.address(V[0]))
# artificial stress corrections
if V[0] > 0: rd[0] = -self.eps * V[0] * rhoi21
else : rd[0] = 0
if V[1] > 0: rd[1] = -self.eps * V[1] * rhoi21
else : rd[1] = 0
if V[2] > 0: rd[2] = -self.eps * V[2] * rhoi21
else : rd[2] = 0
# transform artificial stresses in original frame
transform_diag_inv(cython.address(rd[0]), R, Rab)
# store the values
d_r00[d_idx] = Rab[0][0]; d_r11[d_idx] = Rab[1][1]; d_r22[d_idx] = Rab[2][2]
d_r12[d_idx] = Rab[1][2]; d_r02[d_idx] = Rab[0][2]; d_r01[d_idx] = Rab[0][1]
[docs]class MomentumEquationWithStress2D(Equation):
r"""**Momentum Equation with Artificial Stress**
.. math::
\frac{D\vec{v_a}^i}{Dt} = \sum_b m_b\left(\frac{\sigma_a^{ij}}{\rho_a^2}
+\frac{\sigma_b^{ij}}{\rho_b^2} + R_{ab}^{ij}f^n \right)\nabla_a W_{ab}
where
.. math::
f_{ab} = \frac{W(r_{ab})}{W(\Delta p)}\\
R_{ab}^{ij} = R_{a}^{ij} + R_{b}^{ij}
"""
def __init__(self, dest, sources, wdeltap=-1, n=1):
r"""
Parameters
----------
wdeltap : float
evaluated value of :math:`W(\Delta p)`
n : float
constant
with_correction : bool
switch for using tensile instability correction
"""
self.wdeltap = wdeltap
self.n = n
self.with_correction = True
if wdeltap < 0:
self.with_correction = False
super(MomentumEquationWithStress2D, self).__init__(dest, sources)
[docs] def initialize(self, d_idx, d_au, d_av):
d_au[d_idx] = 0.0
d_av[d_idx] = 0.0
[docs] def loop(self, d_idx, s_idx, d_rho, s_rho, s_m, d_p, s_p,
d_s00, d_s01, d_s11, s_s00, s_s01, s_s11,
d_r00, d_r01, d_r11, s_r00, s_r01, s_r11,
d_au, d_av, WIJ, DWIJ):
pa = d_p[d_idx]
pb = s_p[s_idx]
rhoa = d_rho[d_idx]
rhob = s_rho[s_idx]
rhoa21 = 1./(rhoa * rhoa)
rhob21 = 1./(rhob * rhob)
s00a = d_s00[d_idx]
s01a = d_s01[d_idx]
s10a = d_s01[d_idx]
s11a = d_s11[d_idx]
s00b = s_s00[s_idx]
s01b = s_s01[s_idx]
s10b = s_s01[s_idx]
s11b = s_s11[s_idx]
r00a = d_r00[d_idx]
r01a = d_r01[d_idx]
r10a = d_r01[d_idx]
r11a = d_r11[d_idx]
r00b = s_r00[s_idx]
r01b = s_r01[s_idx]
r10b = s_r01[s_idx]
r11b = s_r11[s_idx]
# Add pressure to the deviatoric components
s00a = s00a - pa
s00b = s00b - pb
s11a = s11a - pa
s11b = s11b - pb
# compute the kernel correction term
if self.with_correction:
fab = WIJ/self.wdeltap
fab = pow(fab, self.n)
art_stress00 = fab * (r00a + r00b)
art_stress01 = fab * (r01a + r01b)
art_stress11 = fab * (r11a + r11b)
else:
art_stress00 = 0.0
art_stress01 = 0.0
art_stress11 = 0.0
# compute accelerations
mb = s_m[s_idx]
d_au[d_idx] += mb * (s00a*rhoa21 + s00b*rhob21 + art_stress00) * DWIJ[0] + \
mb * (s01a*rhoa21 + s01b*rhob21 + art_stress01) * DWIJ[1]
d_av[d_idx] += mb * (s10a*rhoa21 + s10b*rhob21 + art_stress01) * DWIJ[0] + \
mb * (s11a*rhoa21 + s11b*rhob21 + art_stress11) * DWIJ[1]
[docs]class HookesDeviatoricStressRate2D(Equation):
r""" **Rate of change of stress (2D)**
.. math::
\frac{dS^{ij}}{dt} = 2\mu\left(\epsilon^{ij} - \frac{1}{3}\delta^{ij}
\epsilon^{ij}\right) + S^{ik}\Omega^{jk} + \Omega^{ik}S^{kj}
where
.. math::
\epsilon^{ij} = \frac{1}{2}\left(\frac{\partial v^i}{\partial x^j} +
\frac{\partial v^j}{\partial x^i}\right)\\
\Omega^{ij} = \frac{1}{2}\left(\frac{\partial v^i}{\partial x^j} -
\frac{\partial v^j}{\partial x^i} \right)
"""
def __init__(self, dest, sources, shear_mod):
r"""
Parameters
----------
shear_mod : float
shear modulus (:math:`\mu`)
"""
self.shear_mod = shear_mod
super(HookesDeviatoricStressRate2D, self).__init__(dest, sources)
[docs] def initialize(self, d_idx, d_as00, d_as01, d_as11):
d_as00[d_idx] = 0.0
d_as01[d_idx] = 0.0
d_as11[d_idx] = 0.0
[docs] def loop(self, d_idx, d_s00, d_s01, d_s11,
d_v00, d_v01, d_v10, d_v11,
d_as00, d_as01, d_as11):
v00 = d_v00[d_idx]
v01 = d_v01[d_idx]
v10 = d_v10[d_idx]
v11 = d_v11[d_idx]
s00 = d_s00[d_idx]
s01 = d_s01[d_idx]
s10 = d_s01[d_idx]
s11 = d_s11[d_idx]
# strain rate tensor is symmetric
eps00 = v00
eps01 = 0.5 * (v01 + v10)
eps10 = eps01
eps11 = v11
# rotation tensor is asymmetric
omega01 = 0.5 * (v01 - v10)
omega10 = -omega01
tmp = 2.0*self.shear_mod
trace = 1.0/3.0 * (eps00 + eps11)
# S_00
d_as00[d_idx] = tmp*( eps00 - trace ) + \
( s01*omega01 ) + ( s10*omega01 )
# S_01
d_as01[d_idx] = tmp*(eps01) + \
( s00*omega10 ) + ( s11*omega01 )
# S_11
d_as11[d_idx] = tmp*( eps11 - trace ) + \
( s10*omega10 ) + ( s01*omega10 )
[docs]class EnergyEquationWithStress2D(Equation):
def __init__(self, dest, sources, alpha=1.0, beta=1.0,
eta=0.01):
self.alpha = alpha
self.beta = beta
self.eta = eta
super(EnergyEquationWithStress2D,self).__init__(dest, sources)
[docs] def initialize(self, d_idx, d_ae):
d_ae[d_idx] = 0.0
[docs] def loop(self, d_idx, s_idx, s_m, d_rho, s_rho, d_p, s_p,
d_cs, s_cs, d_ae, XIJ, VIJ, DWIJ, HIJ, R2IJ, RHOIJ1):
rhoa = d_rho[d_idx]
ca = d_cs[d_idx]
pa = d_p[d_idx]
rhob = s_rho[s_idx]
cb = s_cs[s_idx]
pb = s_p[s_idx]
mb = s_m[s_idx]
rhoa2 = 1./(rhoa*rhoa)
rhob2 = 1./(rhob*rhob)
# artificial viscosity
vijdotxij = VIJ[0]*XIJ[0] + VIJ[1]*XIJ[1] + VIJ[2]*XIJ[2]
piij = 0.0
if vijdotxij < 0:
cij = 0.5 * (d_cs[d_idx] + s_cs[s_idx])
muij = (HIJ * vijdotxij)/(R2IJ + self.eta*self.eta*HIJ*HIJ)
piij = -self.alpha*cij*muij + self.beta*muij*muij
piij = piij*RHOIJ1
vijdotdwij = VIJ[0]*DWIJ[0] + VIJ[1]*DWIJ[1] + VIJ[2]*DWIJ[2]
# thermal energy contribution
d_ae[d_idx] += 0.5 * mb * (pa*rhoa2 + pb*rhob2 + piij)
[docs] def post_loop(self, d_idx, d_rho,
d_s00, d_s01, d_s11, s_s00, s_s01, s_s11,
d_v00, d_v01, d_v10, d_v11,
d_ae):
# particle density
rhoa = d_rho[d_idx]
# deviatoric stress rate (symmetric)
s00a = d_s00[d_idx]
s01a = d_s01[d_idx]
s10a = d_s01[d_idx]
s11a = d_s11[d_idx]
# strain rate tensor (symmetric)
eps00 = d_v00[d_idx]
eps01 = 0.5 * (d_v01[d_idx] + d_v10[d_idx])
eps10 = eps01
eps11 = d_v11[d_idx]
# energy acclerations
sdoteij = s00a*eps00 + s01a*eps01 + s10a*eps10 + s11a*eps11
d_ae[d_idx] += 1./rhoa * sdoteij