Using the PySPH library¶
In this document, we describe the fundamental data structures for working with particles in PySPH. Take a look at tutorials for a tutorial introduction to some of the examples. For the experienced user, take a look at The PySPH framework for some of the internal code-generation details and if you want to extend PySPH for your application.
Working With Particles¶
As an object oriented framework for particle methods, PySPH provides convenient data structures to store and manipulate collections of particles. These can be constructed from within Python and are fully compatible with NumPy arrays. We begin with a brief description for the basic data structures for arrays.
C-arrays¶
The BaseArray
class provides a typed array data structure
called CArray. These are used throughout PySPH and are
fundamentally very similar to NumPy arrays. The following named types
are supported:
UIntArray
(32 bit unsigned integers)IntArray
(32 bit signed integers)LongArray
(64 bit signed integers)DoubleArray
(64 bit floating point numbers
Some simple commands to work with BaseArrays from the interactive shell are given below
>>> import numpy
>>> from pyzoltan.core.carray import DoubleArray
>>> array = DoubleArray(10) # array of doubles of length 10
>>> array.set_data( numpy.arange(10) ) # set the data from a NumPy array
>>> array.get(3) # get the value at a given index
>>> array.set(5, -1.0) # set the value at an index to a value
>>> array[3] # standard indexing
>>> array[5] = -1.0 # standard indexing
ParticleArray¶
In PySPH, a collection of BaseArrays make up what is called a
ParticleArray
. This is the main data structure that is used to
represent particles and can be created from NumPy arrays like so:
>>> import numpy
>>> from pysph.base.utils import get_particle_array
>>> x, y = numpy.mgrid[0:1:0.1, 0:1:0.1] # create some data
>>> x = x.ravel(); y = y.ravel() # flatten the arrays
>>> pa = get_particle_array(name='array', x=x, y=y) # create the particle array
In the above, the helper function
pysph.base.utils.get_particle_array()
will instantiate and return a
ParticleArray
with properties x and y set from given NumPy
arrays. In general, a ParticleArray
can be instantiated with an
arbitrary number of properties. Each property is stored internally as a
pyzoltan.core.carray.BaseArray
of the appropriate type.
By default, every ParticleArray
returned using the helper
function will have the following properties:
- x, y, z : Position coordinates (doubles)
- u, v, w : Velocity (doubles)
- h, m, rho : Smoothing length, mass and density (doubles)
- au, av, aw: Accelerations (doubles)
- p : Pressure (doubles)
- gid : Unique global index (unsigned int)
- pid : Processor id (int)
- tag : Tag (int)
The role of the particle properties like positions, velocities and other variables should be clear. These define either the kinematic or dynamic properties associated with SPH particles in a simulation.
PySPH introduces a global identifier for a particle which is required to be unique for that particle. This is represented with the property gid which is of type unsigned int. This property is used in the parallel load balancing algorithm with Zoltan.
The property pid for a particle is an integer that is used to identify the processor to which the particle is currently assigned.
The property tag is an integer that is used for any other identification. For example, we might want to mark all boundary particles with the tag 100. Using this property, we can delete all such particles as
>>> pa.remove_tagged_particles(tag=100)
This gives us a very flexible way to work with particles. Another way
of deleting/extracting particles is by providing the indices (as a
list, NumPy array or a LongArray
) of the particles to
be removed:
>>> indices = [1,3,5,7]
>>> pa.remove_particles( indices )
>>> extracted = pa.extract_particles(indices, props=['rho', 'x', 'y'])
A ParticleArray
can be concatenated with another array to
result in a larger array:
>>> pa.append_parray(another_array)
To set a given list of properties to zero:
>>> props = ['au', 'av', 'aw']
>>> pa.set_to_zero(props)
Properties in a particle array are automatically sized depending on the number
of particles. There are times when fixed size properties are required. For
example if the total mass or total force on a particle array needs to be
calculated, a fixed size constant can be added. This can be done by adding a
constant
to the array as illustrated below:
>>> pa.add_constant('total_mass', 0.0)
>>> pa.add_constant('total_force', [0.0, 0.0, 0.0])
>>> print pa.total_mass, pa.total_force
In the above, the total_mass
is a fixed DoubleArray
of length 1 and
the total_force
is a fixed DoubleArray
of length 3. These constants
will never be resized as one adds or removes particles to/from the particle
array. The constants may be used inside of SPH equations just like any other
property.
The constants can also set in the constructor of the ParticleArray
by passing a dictionary of constants as a constants
keyword argument. For
example:
>>> pa = ParticleArray(
... name='test', x=x,
... constants=dict(total_mass=0.0, total_force=[0.0, 0.0, 0.0])
... )
Take a look at ParticleArray
reference documentation for
some of the other methods and their uses.
Nearest Neighbour Particle Searching (NNPS)¶
To carry out pairwise interactions for SPH, we need to find the nearest
neighbours for a given particle within a specified interaction radius. The
NNPS
object is responsible for handling these nearest neighbour
queries for a list of particle arrays:
>>> from pysph.base import nnps
>>> pa1 = get_particle_array(...) # create one particle array
>>> pa2 = get_particle_array(...) # create another particle array
>>> particles = [pa1, pa2]
>>> nps = nnps.LinkedListNNPS(dim=3, particles=particles, radius_scale=3)
The above will create an NNPS
object that uses the classical
linked-list algorithm for nearest neighbour searches. The radius of
interaction is determined by the argument radius_scale. The book-keeping
cells have a length of \(\text{radius_scale} \times h_{\text{max}}\),
where \(h_{\text{max}}\) is the maximum smoothing length of all
particles assigned to the local processor.
Note that the NNPS
classes also support caching the neighbors
computed. This is useful if one needs to reuse the same set of
neighbors. To enable this, simply pass cache=True
to the
constructor:
>>> nps = nnps.LinkedListNNPS(dim=3, particles=particles, cache=True)
Since we allow a list of particle arrays, we need to distinguish between source and destination particle arrays in the neighbor queries.
Note
A destination particle is a particle belonging to that species for which the neighbors are sought.
A source particle is a particle belonging to that species which contributes to a given destination particle.
With these definitions, we can query for nearest neighbors like so:
>>> nbrs = UIntArray()
>>> nps.get_nearest_particles(src_index, dst_index, d_idx, nbrs)
where src_index, dst_index and d_idx are integers. This will
return, for the d_idx particle of the dst_index particle array
(species), nearest neighbors from the src_index particle array
(species). Passing the src_index and dst_index every time is
repetitive so an alternative API is to call set_context
as done
below:
>>> nps.set_context(src_index=0, dst_index=0)
If the NNPS
instance is configured to use caching, then it will also
pre-compute the neighbors very efficiently. Once the context is set one
can get the neighbors as:
>>> nps.get_nearest_neighbors(d_idx, nbrs)
Where d_idx and nbrs are as discussed above.
If we want to re-compute the data structure for a new distribution of
particles, we can call the NNPS.update()
method:
>>> nps.update()
Periodic domains¶
The constructor for the NNPS
accepts an optional argument
(DomainManager
) that is used to delimit the maximum
spatial extent of the simulation domain. Additionally, this argument
is also used to indicate the extents for a periodic domain. We
construct a DomainManager
object like so
>>> from pysph.base.nnps import DomainManager
>>> from pysph.base.point import Point
>>> domain = DomainManager(xmin, xmax, ymin, ymax, zmin, zmax,
periodic_in_x=True, periodic_in_y=True,
periodic_in_z=False)
where xmin ... zmax are floating point arguments delimiting the simulation domain and periodic_in_x,y,z are bools defining the periodic axes.
When the NNPS
object is constructed with this
DomainManager
, care is taken to create periodic ghosts for
particles in the vicinity of the periodic boundaries. These ghost
particles are given a special tag defined by
ParticleTAGS
class ParticleTAGS:
Local = 0
Remote = 1
Ghost = 2
Note
The Local tag is used to for ordinary particles assigned and owned by a given processor. This is the default tag for all particles.
Note
The Remote tag is used for ordinary particles assigned to but not owned by a given processor. Particles with this tag are typically used to satisfy neighbor queries across processor boundaries in a parallel simulation.
Note
The Ghost tag is used for particles that are created to satisfy boundary conditions locally.
Particle aligning¶
In PySPH, the ParticleArray
aligns all particles upon a
call to the ParticleArray.align_particles()
method. The
aligning is done so that all particles with the Local tag are placed
first, followed by particles with other tags.
There is no preference given to the tags other than the fact that a particle with a non-zero tag is placed after all particles with a zero (Local) tag. Intuitively, the local particles represent real particles or particles that we want to do active computation on (destination particles).
The data attribute ParticleArray.num_real_particles returns the
number of real or Local particles. The total number of particles in
a given ParticleArray
can be obtained by a call to the
ParticleArray.get_number_of_particles()
method.
The following is a simple example demonstrating this default behaviour of PySPH:
>>> x = numpy.array( [0, 1, 2, 3], dtype=numpy.float64 )
>>> tag = numpy.array( [0, 2, 0, 1], dtype=numpy.int32 )
>>> pa = utils.get_particle_array(x=x, tag=tag)
>>> print pa.get_number_of_particles() # total number of particles
>>> 4
>>> print pa.num_real_particles # no. of particles with tag 0
>>> 2
>>> x, tag = pa.get('x', 'tag', only_real_particles=True) # get only real particles (tag == 0)
>>> print x
>>> [0. 2.]
>>> print tag
>>> [0 0]
>>> x, tag = pa.get('x', 'tag', only_real_particles=False) # get all particles
>>> print x
>>> [0. 2. 1. 3.]
>>> print tag
>>> [0 0 2 1]
We are now in a position to put all these ideas together and write our first SPH application.
Parallel NNPS with PyZoltan¶
PySPH uses the Zoltan data management library for dynamic load
balancing through a Python wrapper PyZoltan
, which
provides functionality for parallel neighbor queries in a manner
completely analogous to NNPS
.
Particle data is managed and exchanged in parallel via a derivative of
the abstract base class ParallelManager
object. Continuing
with our example, we can instantiate a
ZoltanParallelManagerGeometric
object as:
>>> ... # create particles
>>> from pysph.parallel import ZoltanParallelManagerGeometric
>>> pm = ZoltanParallelManagerGeometric(dim, particles, comm, radius_scale, lb_method)
The constructor for the parallel manager is quite similar to the
NNPS
constructor, with two additional parameters, comm
and lb_method. The first is the MPI communicator object and the
latter is the partitioning algorithm requested. The following
geometric load balancing algorithms are supported:
The particle distribution can be updated in parallel by a call to the
ParallelManager.update()
method. Particles across processor
boundaries that are needed for neighbor queries are assigned the tag
Remote as shown in the figure:
Putting it together: A simple example¶
Now that we know how to work with particles, we will use the data structures to carry out the simplest SPH operation, namely, the estimation of particle density from a given distribution of particles.
We consider particles distributed on a uniform Cartesian lattice ( \(\Delta x = \Delta y = \Delta\)) in a doubly periodic domain \([0,1]\times[0,1]\).
The particle mass is set equal to the “volume” \(\Delta^2\) associated with each particle and the smoothing length is taken as \(1.3\times \Delta\). With this initialization, we have for the estimation for the particle density
We will use the CubicSpline
kernel, defined in
pysph.base.kernels module. The code to set-up the particle
distribution is given below
# PySPH imports
from pyzoltan.core.carray import UIntArray
from pysph.base.utils import utils
from pysph.base.kernels import CubicSpline
from pysph.base.nnps import DomainManager
from pysph.base.nnps import LinkedListNNPS
# NumPy
import numpy
# Create a particle distribution
dx = 0.01; dxb2 = 0.5 * dx
x, y = numpy.mgrid[dxb2:1:dx, dxb2:1:dx]
x = x.ravel(); y = y.ravel()
h = numpy.ones_like(x) * 1.3*dx
m = numpy.ones_like(x) * dx*dx
# Create the particle array
pa = utils.get_particle_array(x=x,y=y,h=h,m=m)
# Create the periodic DomainManager object and NNPS
domain = DomainManager(xmin=0., xmax=1., ymin=0., ymax=1., periodic_in_x=True, periodic_in_y=True)
nps = LinkedListNNPS(dim=2, particles=[pa,], radius_scale=2.0, domain=domain)
# The SPH kernel. The dimension argument is needed for the correct normalization constant
k = CubicSpline(dim=2)
Note
Notice that the particles were created with an offset of
\(\frac{\Delta}{2}\). This is required since the
NNPS
object will box-wrap particles near periodic
boundaries.
The NNPS
object will create periodic ghosts for the
particles along each periodic axis.
The ghost particles are assigned the tag value 2. For this example, periodic ghosts are created along each coordinate direction as shown in the figure.
SPH Kernels¶
Pairwise interactions in SPH are weighted by the kernel \(W_{ab}\). In PySPH, the pysph.base.kernels module provides a Python interface for these terms. The general definition for an SPH kernel is of the form:
class Kernel(object):
def __init__(self, dim=1):
self.radius_scale = 2.0
self.dim = dim
def kernel(self, xij=[0., 0, 0], rij=1.0, h=1.0):
...
return wij
def gradient(self, xij=[0., 0, 0], rij=1.0, h=1.0, grad=[0, 0, 0]):
...
grad[0] = dwij_x
grad[1] = dwij_y
grad[2] = dwij_z
The kernel is an object with two methods kernel and gradient. \(\text{xij}\) is the difference vector between the destination and source particle \(\boldsymbol{x}_{\text{i}} - \boldsymbol{x}_{\text{j}}\) with \(\text{rij} = \sqrt{ \boldsymbol{x}_{ij}^2}\). The gradient method accepts an additional argument that upon exit is populated with the kernel gradient values.
Density summation¶
In the final part of the code, we iterate over all target or destination particles and compute the density contributions from neighboring particles:
nbrs = UIntArray() # array for neighbors
x, y, h, m = pa.get('x', 'y', 'h', 'm', only_real_particles=False) # source particles will include ghosts
for i in range( pa.num_real_particles ): # iterate over all local particles
xi = x[i]; yi = y[i]; hi = h[i]
nps.get_nearest_particles(0, 0, i, nbrs) # get neighbors
neighbors = nbrs.get_npy_array() # numpy array of neighbors
rho = 0.0
for j in neighbors: # iterate over each neighbor
xij = xi - x[j] # interaction terms
yij = yi - y[j]
rij = numpy.sqrt( xij**2 + yij**2 )
hij = 0.5 * (h[i] + h[j])
wij = k.kernel( [xij, yij, 0.0], rij, hij) # kernel interaction
rho += m[j] * wij
pa.rho[i] = rho # contribution for this destination
The average density computed in this manner can be verified as \(\rho_{\text{avg}} = 0.99994676895585222\).
Summary¶
In this document, we introduced the most fundamental data structures in PySPH for working with particles. With these data structures, PySPH can be used as a library for managing particles for your application.
If you are interested in the PySPH framework and want to try out some eaxmples, check out the tutorials: tutorials.