Source code for pysph.sph.rigid_body

# -*- coding: utf-8 -*-
"""Rigid body related equations.
"""
from pysph.base.reduce_array import serial_reduce_array, parallel_reduce_array
from pysph.sph.equation import Equation
from pysph.sph.integrator_step import IntegratorStep


[docs]def skew(vec): import sympy as S x, y, z = vec[0], vec[1], vec[2] return S.Matrix([[0, -z, y],[z, 0, -x], [-y, x, 0]])
[docs]def get_alpha_dot(): """Use sympy to perform most of the math and use the resulting formulae to calculate: inv(I) (\tau - w x (I w)) """ import sympy as S ixx, iyy, izz, ixy, ixz, iyz = S.symbols("ixx, iyy, izz, ixy, ixz, iyz") tx, ty, tz = S.symbols("tx, ty, tz") wx, wy, wz = S.symbols('wx, wy, wz') tau = S.Matrix([tx, ty, tz]) I = S.Matrix([[ixx, ixy, ixz], [ixy, iyy, iyz], [ixz, iyz, izz]]) w = S.Matrix([wx, wy, wz]) Iinv = I.inv() Iinv.simplify() # inv(I) (\tau - w x (Iw)) res = Iinv*(tau - w.cross(I*w)) res.simplify() # Now do some awesome sympy magic. syms, result = S.cse(res, symbols=S.numbered_symbols('tmp')) for lhs, rhs in syms: print("%s = %s"%(lhs, rhs)) for i in range(3): print("omega_dot[%d] ="%i, result[0][i])
[docs]def get_torque(): """Use sympy to perform some simple math. R x F C_m x F w x r """ import sympy as S x, y, z, fx, fy, fz = S.symbols("x, y, z, fx, fy, fz") R = S.Matrix([x, y, z]) F = S.Matrix([fx, fy, fz]) print("Torque:", R.cross(F)) cx, cy, cz = S.symbols('cx, cy, cz') d = S.Matrix([cx, cy, cz]) print("c_m x f = ", d.cross(F)) wx, wy, wz = S.symbols('wx, wy, wz') rx, ry, rz = S.symbols('rx, ry, rz') w = S.Matrix([wx, wy, wz]) r = S.Matrix([rx, ry, rz]) print("w x r = %s"%w.cross(r))
# This is defined to silence editor warnings for the use of declare.
[docs]def declare(*args): pass
[docs]class RigidBodyMoments(Equation):
[docs] def initialize(self, d_idx, d_m, d_x, d_y, d_z, d_fx, d_fy, d_fz, d_mi, d_num_body, d_body_id): nbody = declare('int') nbody = d_num_body[0] _i = declare('int') _j = declare('int') if d_idx == 0: for _i in range(nbody): for _j in range(16): d_mi[_i*16 + _j] = 0.0 base = declare('int') base = d_body_id[d_idx]*16 # Find the total_mass, center of mass and second moments. m = d_m[d_idx] x = d_x[d_idx] y = d_y[d_idx] z = d_z[d_idx] d_mi[base] += m d_mi[base + 1] += m*x d_mi[base + 2] += m*y d_mi[base + 3] += m*z # Only do the lower triangle of values moments of inertia. d_mi[base + 4] += m*(y*y + z*z) d_mi[base + 5] += m*(x*x + z*z) d_mi[base + 6] += m*(x*x + y*y) d_mi[base + 7] -= m*x*y d_mi[base + 8] -= m*x*z d_mi[base + 9] -= m*y*z # the total force and torque fx = d_fx[d_idx] fy = d_fy[d_idx] fz = d_fz[d_idx] d_mi[base + 10] += fx d_mi[base + 11] += fy d_mi[base + 12] += fz # Calculate the torque and reduce it. d_mi[base + 13] += (y*fz - z*fy) d_mi[base + 14] += (z*fx - x*fz) d_mi[base + 15] += (x*fy - y*fx)
[docs] def reduce(self, dst): # Reduce the temporary mi values in parallel across processors. dst.mi.set_data(parallel_reduce_array(dst.mi)) # Set the reduced values. nbody = declare('int') i = declare('int') base_mi = declare('int') base = declare('int') nbody = dst.num_body.data[0] for i in range(nbody): base_mi = i*16 base = i*3 m = dst.mi.data[base_mi + 0] dst.total_mass.data[i] = m cx = dst.mi.data[base_mi + 1]/m cy = dst.mi.data[base_mi + 2]/m cz = dst.mi.data[base_mi + 3]/m dst.cm.data[base + 0] = cx dst.cm.data[base + 1] = cy dst.cm.data[base + 2] = cz # The actual moment of inertia about center of mass from parallel # axes theorem. ixx = dst.mi.data[base_mi + 4] - (cy*cy + cz*cz)*m iyy = dst.mi.data[base_mi + 5] - (cx*cx + cz*cz)*m izz = dst.mi.data[base_mi + 6] - (cx*cx + cy*cy)*m ixy = dst.mi.data[base_mi + 7] + cx*cy*m ixz = dst.mi.data[base_mi + 8] + cx*cz*m iyz = dst.mi.data[base_mi + 9] + cy*cz*m dst.mi.data[base_mi + 0] = ixx dst.mi.data[base_mi + 1] = ixy dst.mi.data[base_mi + 2] = ixz dst.mi.data[base_mi + 3] = ixy dst.mi.data[base_mi + 4] = iyy dst.mi.data[base_mi + 5] = iyz dst.mi.data[base_mi + 6] = ixz dst.mi.data[base_mi + 7] = iyz dst.mi.data[base_mi + 8] = izz fx = dst.mi.data[base_mi + 10] fy = dst.mi.data[base_mi + 11] fz = dst.mi.data[base_mi + 12] dst.force.data[base + 0] = fx dst.force.data[base + 1] = fy dst.force.data[base + 2] = fz # Acceleration of CM. dst.ac.data[base + 0] = fx/m dst.ac.data[base + 1] = fy/m dst.ac.data[base + 2] = fz/m # Find torque about the Center of Mass and not origin. tx = dst.mi.data[base_mi + 13] ty = dst.mi.data[base_mi + 14] tz = dst.mi.data[base_mi + 15] tx -= cy*fz - cz*fy ty -= -cx*fz + cz*fx tz -= cx*fy - cy*fx dst.torque.data[base + 0] = tx dst.torque.data[base + 1] = ty dst.torque.data[base + 2] = tz wx = dst.omega.data[base + 0] wy = dst.omega.data[base + 1] wz = dst.omega.data[base + 2] # Find omega_dot from: omega_dot = inv(I) (\tau - w x (Iw)) # This was done using the sympy code above. tmp0 = iyz**2 tmp1 = ixy**2 tmp2 = ixz**2 tmp3 = ixx*iyy tmp4 = ixy*ixz tmp5 = 1./(ixx*tmp0 + iyy*tmp2 - 2*iyz*tmp4 + izz*tmp1 - izz*tmp3) tmp6 = ixy*izz - ixz*iyz tmp7 = ixz*wx + iyz*wy + izz*wz tmp8 = ixx*wx + ixy*wy + ixz*wz tmp9 = tmp7*wx - tmp8*wz + ty tmp10 = ixy*iyz - ixz*iyy tmp11 = ixy*wx + iyy*wy + iyz*wz tmp12 = -tmp11*wx + tmp8*wy + tz tmp13 = tmp11*wz - tmp7*wy + tx tmp14 = ixx*iyz - tmp4 dst.omega_dot.data[base + 0] = tmp5*(-tmp10*tmp12 - tmp13*(iyy*izz - tmp0) + tmp6*tmp9) dst.omega_dot.data[base + 1] = tmp5*(tmp12*tmp14 + tmp13*tmp6 - tmp9*(ixx*izz - tmp2)) dst.omega_dot.data[base + 2] = tmp5*(-tmp10*tmp13 - tmp12*(-tmp1 + tmp3) + tmp14*tmp9)
[docs]class RigidBodyMotion(Equation):
[docs] def initialize(self, d_idx, d_x, d_y, d_z, d_u, d_v, d_w, d_cm, d_vc, d_ac, d_omega, d_body_id): base = declare('int') base = d_body_id[d_idx]*3 wx = d_omega[base + 0]; wy = d_omega[base + 1]; wz = d_omega[base + 2] rx = d_x[d_idx] - d_cm[base + 0] ry = d_y[d_idx] - d_cm[base + 1] rz = d_z[d_idx] - d_cm[base + 2] d_u[d_idx] = d_vc[base + 0] + wy*rz - wz*ry d_v[d_idx] = d_vc[base + 1] + wz*rx - wx*rz d_w[d_idx] = d_vc[base + 2] + wx*ry - wy*rx
[docs]class BodyForce(Equation): def __init__(self, dest, sources, gx=0.0, gy=0.0, gz=0.0): self.gx = gx self.gy = gy self.gz = gz super(BodyForce, self).__init__(dest, sources)
[docs] def initialize(self, d_idx, d_m, d_fx, d_fy, d_fz): d_fx[d_idx] = d_m[d_idx]*self.gx d_fy[d_idx] = d_m[d_idx]*self.gy d_fz[d_idx] = d_m[d_idx]*self.gz
[docs]class NumberDensity(Equation):
[docs] def initialize(self, d_idx, d_V): d_V[d_idx] = 0.0
[docs] def loop(self, d_idx, d_V, WIJ): d_V[d_idx] += WIJ
[docs]class SummationDensityRigidBody(Equation): def __init__(self, dest, sources, rho0): self.rho0 = rho0 super(SummationDensityRigidBody, self).__init__(dest, sources)
[docs] def initialize(self, d_idx, d_rho): d_rho[d_idx] = 0.0
[docs] def loop(self, d_idx, d_rho, s_idx, s_V, WIJ): d_rho[d_idx] += self.rho0/s_V[s_idx]*WIJ
[docs]class ViscosityRigidBody(Equation): """The viscous acceleration on the fluid/solid due to a boundary. Implemented from Akinci et al. http://dx.doi.org/10.1145/2185520.2185558 Use this with the fluid as a destination and body as source. """ def __init__(self, dest, sources, rho0, nu): self.nu = nu self.rho0 = rho0 super(ViscosityRigidBody, self).__init__(dest, sources)
[docs] def loop(self, d_idx, d_m, d_au, d_av, d_aw, d_rho, s_idx, s_V, s_fx, s_fy, s_fz, EPS, VIJ, XIJ, R2IJ, DWIJ): phi_b = self.rho0/(s_V[s_idx]*d_rho[d_idx]) vijdotxij = min(VIJ[0]*XIJ[0] + VIJ[1]*XIJ[1] + VIJ[2]*XIJ[2], 0.0) fac = self.nu*phi_b*vijdotxij/(R2IJ + EPS) ax = fac*DWIJ[0] ay = fac*DWIJ[1] az = fac*DWIJ[2] d_au[d_idx] += ax d_av[d_idx] += ay d_aw[d_idx] += az s_fx[s_idx] += -d_m[d_idx]*ax s_fy[s_idx] += -d_m[d_idx]*ay s_fz[s_idx] += -d_m[d_idx]*az
[docs]class PressureRigidBody(Equation): """The pressure acceleration on the fluid/solid due to a boundary. Implemented from Akinci et al. http://dx.doi.org/10.1145/2185520.2185558 Use this with the fluid as a destination and body as source. """ def __init__(self, dest, sources, rho0): self.rho0 = rho0 super(PressureRigidBody, self).__init__(dest, sources)
[docs] def loop(self, d_idx, d_m, d_rho, d_au, d_av, d_aw, d_p, s_idx, s_V, s_fx, s_fy, s_fz, DWIJ): rho1 = 1.0/d_rho[d_idx] fac = -d_p[d_idx]*rho1*rho1*self.rho0/s_V[s_idx] ax = fac*DWIJ[0] ay = fac*DWIJ[1] az = fac*DWIJ[2] d_au[d_idx] += ax d_av[d_idx] += ay d_aw[d_idx] += az s_fx[s_idx] += -d_m[d_idx]*ax s_fy[s_idx] += -d_m[d_idx]*ay s_fz[s_idx] += -d_m[d_idx]*az
[docs]class RigidBodyCollision(Equation): """This is inspired from http://http.developer.nvidia.com/GPUGems3/gpugems3_ch29.html and BK Mishra's article on DEM http://dx.doi.org/10.1016/S0301-7516(03)00032-2 A review of computer simulation of tumbling mills by the discrete element method: Part I - contact mechanics """ def __init__(self, dest, sources, k=1.0, d=1.0, eta=1.0, kt=1.0): """Note that d is a factor multiplied with the "h" of the particle. """ self.k = k self.d = d self.eta = eta self.kt = kt super(RigidBodyCollision, self).__init__(dest, sources)
[docs] def loop(self, d_idx, d_fx, d_fy, d_fz, d_h, d_total_mass, XIJ, RIJ, R2IJ, VIJ): vijdotrij = VIJ[0]*XIJ[0] + VIJ[1]*XIJ[1] + VIJ[2]*XIJ[2] if RIJ > 1e-9: vijdotrij_r2ij = vijdotrij/R2IJ nij_x = XIJ[0]/RIJ nij_y = XIJ[1]/RIJ nij_z = XIJ[2]/RIJ else: vijdotrij_r2ij = 0.0 nij_x = 0.0 nij_y = 0.0 nij_z = 0.0 vijt_x = VIJ[0] - vijdotrij_r2ij*XIJ[0] vijt_y = VIJ[1] - vijdotrij_r2ij*XIJ[1] vijt_z = VIJ[2] - vijdotrij_r2ij*XIJ[2] d = self.d*d_h[d_idx] fac = self.k*d_total_mass[0]/d*max(d - RIJ, 0.0) d_fx[d_idx] += fac*nij_x - self.eta*VIJ[0] - self.kt*vijt_x d_fy[d_idx] += fac*nij_y - self.eta*VIJ[1] - self.kt*vijt_y d_fz[d_idx] += fac*nij_z - self.eta*VIJ[2] - self.kt*vijt_z
[docs]class EulerStepRigidBody(IntegratorStep): """Fast but inaccurate integrator. Use this for testing"""
[docs] def initialize(self): pass
[docs] def stage1(self, d_idx, d_u, d_v, d_w, d_x, d_y, d_z, d_omega, d_omega_dot, d_vc, d_ac, d_num_body, dt=0.0): _i = declare('int') _j = declare('int') base = declare('int') if d_idx == 0: for _i in range(d_num_body[0]): base = 3*_i for _j in range(3): d_vc[base + _j] += d_ac[base + _j]*dt d_omega[base + _j] += d_omega_dot[base + _j]*dt d_x[d_idx] += dt*d_u[d_idx] d_y[d_idx] += dt*d_v[d_idx] d_z[d_idx] += dt*d_w[d_idx]
[docs]class RK2StepRigidBody(IntegratorStep):
[docs] def initialize(self, d_idx, d_x, d_y, d_z, d_x0, d_y0, d_z0, d_omega, d_omega0, d_vc, d_vc0, d_num_body): _i = declare('int') _j = declare('int') base = declare('int') if d_idx == 0: for _i in range(d_num_body[0]): base = 3*_i for _j in range(3): d_vc0[base + _j] = d_vc[base + _j] d_omega0[base + _j] = d_omega[base + _j] d_x0[d_idx] = d_x[d_idx] d_y0[d_idx] = d_y[d_idx] d_z0[d_idx] = d_z[d_idx]
[docs] def stage1(self, d_idx, d_u, d_v, d_w, d_x, d_y, d_z,d_x0, d_y0, d_z0, d_omega, d_omega_dot, d_vc, d_ac, d_omega0, d_vc0, d_num_body, dt=0.0): dtb2 = 0.5*dt _i = declare('int') j = declare('int') base = declare('int') if d_idx == 0: for _i in range(d_num_body[0]): base = 3*_i for j in range(3): d_vc[base + j] = d_vc0[base + j] + d_ac[base + j]*dtb2 d_omega[base + j] = d_omega0[base + j] + d_omega_dot[base + j]*dtb2 d_x[d_idx] = d_x0[d_idx] + dtb2*d_u[d_idx] d_y[d_idx] = d_y0[d_idx] + dtb2*d_v[d_idx] d_z[d_idx] = d_z0[d_idx] + dtb2*d_w[d_idx]
[docs] def stage2(self, d_idx, d_u, d_v, d_w, d_x, d_y, d_z,d_x0, d_y0, d_z0, d_omega, d_omega_dot, d_vc, d_ac, d_omega0, d_vc0, d_num_body, dt=0.0): _i = declare('int') j = declare('int') base = declare('int') if d_idx == 0: for _i in range(d_num_body[0]): base = 3*_i for j in range(3): d_vc[base + j] = d_vc0[base + j] + d_ac[base + j]*dt d_omega[base + j] = d_omega0[base + j] + d_omega_dot[base + j]*dt d_x[d_idx] = d_x0[d_idx] + dt*d_u[d_idx] d_y[d_idx] = d_y0[d_idx] + dt*d_v[d_idx] d_z[d_idx] = d_z0[d_idx] + dt*d_w[d_idx]