Source code for pysph.solver.application

# Standard imports.
import glob
import inspect
import json
import logging
import os
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from os.path import (abspath, basename, dirname, isdir, join, realpath,
    splitext)
import sys
import time

# PySPH imports.
from pysph.base.config import get_config
from pysph.base import utils

from pysph.base.nnps import LinkedListNNPS, BoxSortNNPS, SpatialHashNNPS, \
        ExtendedSpatialHashNNPS

from pysph.base import kernels
from pysph.solver.controller import CommandManager
from pysph.solver.utils import mkdir, load, get_files

# conditional parallel imports
from pysph import has_mpi, has_zoltan, in_parallel
if in_parallel():
    from pysph.parallel.parallel_manager import ZoltanParallelManagerGeometric
    import mpi4py.MPI as mpi

logger = logging.getLogger(__name__)


[docs]def is_overloaded_method(method): """Returns True if the given method is overloaded from any of its bases. """ method_name = method.__name__ self = method.__self__ klass = self.__class__ for base in klass.__bases__: if hasattr(base, method_name): if getattr(base, method_name) != getattr(klass, method_name): return True return False
[docs]def is_using_ipython(): """Return True if the code is being run from an IPython session or notebook. """ try: # If this is being run inside an IPython console or notebook # then this is defined. __IPYTHON__ except NameError: return False else: return True
[docs]def list_all_kernels(): """Return list of available kernels. """ return [n for n in dir(kernels) if inspect.isclass(getattr(kernels, n))]
############################################################################## # `Application` class. ##############################################################################
[docs]class Application(object): """ Class used by any SPH application. """ def __init__(self, fname=None, domain=None): """ Constructor Parameters ---------- fname : str file name to use for the output files. domain : pysph.nnps.DomainManager A domain manager to use. This is used for periodic domains etc. """ self.domain = domain self.solver = None self.nnps = None self.scheme = None self.tools = [] self.parallel_manager = None if fname is None: fname = self._guess_output_filename() self.fname = fname self.args = sys.argv[1:] # MPI related vars. self.comm = None self.num_procs = 1 self.rank = 0 if in_parallel(): self.comm = comm = mpi.COMM_WORLD self.num_procs = comm.Get_size() self.rank = comm.Get_rank() self._log_levels = {'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, 'none': None} self.output_dir = abspath(self._get_output_dir_from_fname()) self.particles = [] self.inlet_outlet = [] self.initialize() self.scheme = self.create_scheme() self._setup_argparse() def _get_output_dir_from_fname(self): return self.fname + '_output' def _guess_output_filename(self): """Try to guess the output filename to use. """ module = self.__module__.rsplit('.', 1)[-1] if is_using_ipython(): return module else: if len(sys.argv[0]) == 0: return module else: return splitext(basename(abspath(sys.argv[0])))[0] def _setup_argparse(self): usage = '%(prog)s [options]' description = """ Note that you may run this program via MPI and the run will be automatically parallelized. To do this run:: $ mpirun -n 4 /path/to/your/python %prog [options] Replace '4' above with the number of processors you have. Below are the options you may pass. """ parser = ArgumentParser( usage=usage, description=description, formatter_class=ArgumentDefaultsHelpFormatter ) self.arg_parse = parser # Add some default options. # -v valid_vals = "Valid values: %s"%self._log_levels.keys() parser.add_argument("-v", "--loglevel", action="store", dest="loglevel", default='info', help="Log-level to use for log messages. " + valid_vals) # --logfile parser.add_argument("--logfile", action="store", dest="logfile", default=None, help="Log file to use for logging, set to "+ "empty ('') for no file logging.") # -l parser.add_argument("-l", "--print-log", action="store_true", dest="print_log", default=False, help="Print log messages to stderr.") # --final-time parser.add_argument("--tf", action="store", type=float, dest="final_time", default=None, help="Total time for the simulation.") # --timestep parser.add_argument("--timestep", action="store", type=float, dest="time_step", default=None, help="Timestep to use for the simulation.") # --max-steps parser.add_argument( "--max-steps", action="store", type=int, dest="max_steps", default=1<<31, help="Maximum number of iteration steps to take (defaults to a " "very large value)." ) # --n-damp parser.add_argument( "--n-damp", action="store", type=int, dest="n_damp", default=None, help="Number of iterations to damp timesteps initially." ) # --adaptive-timestep parser.add_argument("--adaptive-timestep", action="store_true", dest="adaptive_timestep", default=None, help="Use adaptive time stepping.") parser.add_argument("--no-adaptive-timestep", action="store_false", dest="adaptive_timestep", default=None, help="Do not use adaptive time stepping.") # --cfl parser.add_argument("--cfl", action="store", dest="cfl", type=float, default=0.3, help="CFL number for adaptive time steps") # -q/--quiet. parser.add_argument("-q", "--quiet", action="store_true", dest="quiet", default=False, help="Do not print any progress information.") # --disable-output parser.add_argument("--disable-output", action="store_true", dest="disable_output", default=False, help="Do not dump any output files.") # -o/ --fname parser.add_argument("-o", "--fname", action="store", dest="fname", default=self.fname, help="File name to use for output") # --pfreq. parser.add_argument("--pfreq", action="store", dest="freq", default=None, type=int, help="Printing frequency for the output") # --detailed-output. parser.add_argument("--detailed-output", action="store_true", dest="detailed_output", default=None, help="Dump detailed output.") # -z/--compress-output parser.add_argument( "-z", "--compress-output", action="store_true", dest="compress_output", default=False, help="Compress generated output files." ) # --output-remote parser.add_argument("--output-dump-remote", action="store_true", dest="output_dump_remote", default=False, help="Save Remote particles in parallel") # -d/--directory parser.add_argument("-d", "--directory", action="store", dest="output_dir", default=self._get_output_dir_from_fname(), help="Dump output in the specified directory.") # --openmp parser.add_argument("--openmp", action="store_true", dest="with_openmp", default=None, help="Use OpenMP to run the "\ "simulation using multiple cores.") parser.add_argument("--no-openmp", action="store_false", dest="with_openmp", default=None, help="Do not use OpenMP to run the "\ "simulation using multiple cores.") # --kernel all_kernels = list_all_kernels() parser.add_argument( "--kernel", action="store", dest="kernel", default=None, choices=all_kernels, help="Use specified kernel from %s"%all_kernels ) # Restart options restart = parser.add_argument_group("Restart options", "Restart options for PySPH") restart.add_argument("--restart-file", action="store", dest="restart_file", default=None, help=("""Restart a PySPH simulation using a specified file """)), restart.add_argument("--rescale-dt", action="store", dest="rescale_dt", default=1.0, type=float, help=("Scale dt upon restarting by a numerical constant")) # NNPS options nnps_options = parser.add_argument_group("NNPS", "Nearest Neighbor searching") # --nnps nnps_options.add_argument("--nnps", dest="nnps", choices=['box', 'll', 'sh', 'esh'], default='ll', help="Use one of box-sort ('box') or "\ "the linked list algorithm ('ll') or "\ "the spatial hash algorithm ('sh') or "\ "the extended spatial hash algorithm ('esh')" ) nnps_options.add_argument("--spatial-hash-sub-factor", dest="H", type=int, default=3, help="Sub division factor for ExtendedSpatialHashNNPS" ) nnps_options.add_argument("--approximate-nnps", dest="approximate_nnps", action="store_true", default=False, help="Use for approximate NNPS") nnps_options.add_argument("--spatial-hash-table-size", dest="table_size", type=int, default=131072, help="Table size for SpatialHashNNPS and \ ExtendedSpatialHashNNPS" ) # --fixed-h nnps_options.add_argument("--fixed-h", dest="fixed_h", action="store_true", default=False, help="Option for fixed smoothing lengths") nnps_options.add_argument("--cache-nnps", dest="cache_nnps", action="store_true", default=False, help="Option to enable the use of neighbor caching.") nnps_options.add_argument( "--sort-gids", dest="sort_gids", action="store_true", default=False, help="Sort neighbors by the GIDs to get "\ "consistent results in serial and parallel (slows down a bit)." ) # Zoltan Options zoltan = parser.add_argument_group("PyZoltan", "Zoltan load balancing options") zoltan.add_argument("--with-zoltan", action="store_true", dest="with_zoltan", default=True, help=("""Use PyZoltan for dynamic load balancing """)) zoltan.add_argument("--zoltan-lb-method", action="store", dest="zoltan_lb_method", default="RCB", help=("""Choose the Zoltan load balancnig method""")) # --rcb-lock zoltan.add_argument("--rcb-lock", action="store_true", dest="zoltan_rcb_lock_directions", default=False, help=("Lock the directions of the RCB cuts")) # rcb--reuse zoltan.add_argument("--rcb-reuse", action='store_true', dest="zoltan_rcb_reuse", default=False, help=("Reuse previous RCB cuts")) # rcb-rectilinear zoltan.add_argument("--rcb-rectilinear", action="store_true", dest='zoltan_rcb_rectilinear', default=False, help=("Produce nice rectilinear blocks without projections")) # rcb-set-direction zoltan.add_argument("--rcb-set-direction", action='store', dest="zoltan_rcb_set_direction", default=0, type=int, help=("Set the order of the RCB cuts")) zoltan.add_argument("--zoltan-weights", action="store_false", dest="zoltan_weights", default=True, help=("""Switch between using weights for input to Zoltan. defaults to True""")) zoltan.add_argument("--ghost-layers", action='store', dest='ghost_layers', default=3.0, type=float, help=('Number of ghost cells to share for remote neighbors')) zoltan.add_argument("--lb-freq", action='store', dest='lb_freq', default=10, type=int, help=('The frequency for load balancing')) zoltan.add_argument("--zoltan-debug-level", action="store", dest="zoltan_debug_level", default="0", help=("""Zoltan debugging level""")) # Options to control parallel execution parallel_options=parser.add_argument_group("Parallel Options") # --update-cell-sizes parallel_options.add_argument("--update-cell-sizes", action='store_true', dest='update_cell_sizes', default=False, help=("Recompute cell sizes for binning in parallel")) # --parallel-scale-factor parallel_options.add_argument("--parallel-scale-factor", action="store", dest="parallel_scale_factor", default=2.0, type=float, help=("""Kernel scale factor for the parallel update""")) # --parallel-output-mode parallel_options.add_argument("--parallel-output-mode", action="store", dest="parallel_output_mode", default=None, help="""Use 'collected' to dump one output at root or 'distributed' for every processor. """) # solver interfaces interfaces = parser.add_argument_group("Interfaces", "Add interfaces to the solver") interfaces.add_argument("--interactive", action="store_true", dest="cmd_line", default=False, help=("Add an interactive commandline interface " "to the solver")) interfaces.add_argument("--xml-rpc", action="store", dest="xml_rpc", metavar="[HOST:] PORT", help=("Add an XML-RPC interface to the solver;" "HOST=0.0.0.0 by default")) interfaces.add_argument("--multiproc", action="store", dest="multiproc", metavar='[[AUTHKEY@] HOST:] PORT[+] ', default="pysph@0.0.0.0:8800+", help=("Add a python multiprocessing interface " "to the solver; " "AUTHKEY=pysph, HOST=0.0.0.0, PORT=8800+ by" " default (8800+ means first available port " "number 8800 onwards)")) interfaces.add_argument("--no-multiproc", action="store_const", dest="multiproc", const=None, help=("Disable multiprocessing interface " "to the solver")) # Scheme options. if self.scheme is not None: scheme_options = parser.add_argument_group( "SPH Scheme options", "Scheme related command line arguments", conflict_handler="resolve" ) self.scheme.add_user_options(scheme_options) # User options. user_options = parser.add_argument_group( "User", "User defined command line arguments" ) self.add_user_options(user_options) def _parse_command_line(self, force=False): """If force is True, it will parse the arguments regardless of whether it is running in IPython or not. This is handy when you want to parse the command line for a previously run case. """ if is_using_ipython() and not force: # Don't parse the command line args. options = self.arg_parse.parse_args([]) else: options = self.arg_parse.parse_args(self.args) self.options = options # save the path where we want to dump output self.output_dir = abspath(options.output_dir) mkdir(self.output_dir) if self.scheme is not None: self.scheme.consume_user_options(self.options) self.consume_user_options() self.configure_scheme() def _setup_logging(self): """Setup logging for the application. """ options = self.options # Setup logging based on command line options. level = self._log_levels[options.loglevel] if level is None: return # logging setup logger.setLevel(level) filename = options.logfile # Setup the log file. if filename is None: filename = self.fname + '.log' if len(filename) > 0: lfn = os.path.join(self.output_dir,filename) format = '%(levelname)s|%(asctime)s|%(name)s|%(message)s' logging.basicConfig(level=level, format=format, filename=lfn, filemode='a') if options.print_log: logger.addHandler(logging.StreamHandler()) def _create_inlet_outlet(self, inlet_outlet_factory): """Create the inlets and outlets if needed. This method requires that the particles be already created. The `inlet_outlet_factory` is passed a dictionary of the particle arrays. The factory should return a list of inlets and outlets. """ if inlet_outlet_factory is not None: solver = self.solver particle_arrays = dict([(p.name, p) for p in self.particles]) self.inlet_outlet = inlet_outlet_factory(particle_arrays) # Hook up the inlet/outlet's update method to be called after # each stage. for obj in self.inlet_outlet: solver.add_post_step_callback(obj.update) def _create_particles(self, particle_factory, *args, **kw): """ Create particles given a callable `particle_factory` and any arguments to it. """ options = self.options rank = self.rank # particle array info that is used to create dummy particles # on non-root processors particles_info = {} # Only master actually calls the particle factory, the rest create # dummy particle arrays. if rank == 0: if options.restart_file is not None: # FIXME: not tested, probably does not work! solver = self.solver data = load(options.restart_file) arrays = data['arrays'] solver_data = data['solver_data'] # arrays and particles particles = [] for array_name in arrays: particles.append( arrays[array_name] ) # save the particles list self.particles = particles # time, timestep and solver iteration count at restart t, dt, count = solver_data['t'], solver_data['dt'], solver_data['count'] # rescale dt at restart dt *= options.rescale_dt solver.t, solver.dt, solver.count = t, dt, count else: self.particles = particle_factory(*args, **kw) # get the array info which will be b'casted to other procs particles_info = utils.get_particles_info(self.particles) # Broadcast the particles_info to other processors for parallel runs if self.num_procs > 1: particles_info = self.comm.bcast(particles_info, root=0) # now all processors other than root create dummy particle arrays if rank != 0: self.particles = utils.create_dummy_particles(particles_info) def _configure(self): """Configures the application using the options from the command-line. """ options = self.options # Setup configuration options. if options.with_openmp is not None: get_config().use_openmp = options.with_openmp # setup the solver using any options self.solver.setup_solver(options.__dict__) solver = self.solver # fixed smoothing lengths fixed_h = solver.fixed_h or options.fixed_h kernel = solver.kernel if options.kernel is not None: kernel = getattr(kernels, options.kernel)(dim=solver.dim) solver.kernel = kernel # This should be called before an NNPS is created as the particles are # changed after the initial load-balancing. self._setup_parallel_manager_and_initial_load_balance() if self.nnps is None: cache = options.cache_nnps # create the NNPS object if options.nnps == 'box': nnps = BoxSortNNPS( dim=solver.dim, particles=self.particles, radius_scale=kernel.radius_scale, domain=self.domain, cache=cache, sort_gids=options.sort_gids ) elif options.nnps == 'll': nnps = LinkedListNNPS( dim=solver.dim, particles=self.particles, radius_scale=kernel.radius_scale, domain=self.domain, fixed_h=fixed_h, cache=cache, sort_gids=options.sort_gids ) elif options.nnps == 'sh': nnps = SpatialHashNNPS( dim=solver.dim, particles=self.particles, radius_scale=kernel.radius_scale, domain=self.domain, fixed_h=fixed_h, cache=cache, table_size=options.table_size, sort_gids=options.sort_gids ) elif options.nnps == 'esh': nnps = ExtendedSpatialHashNNPS( dim=solver.dim, particles=self.particles, radius_scale=kernel.radius_scale, domain=self.domain, fixed_h=fixed_h, cache=cache, H=options.H, table_size=options.table_size, sort_gids=options.sort_gids, approximate=options.approximate_nnps ) self.nnps = nnps nnps = self.nnps # once the NNPS has been set-up, we set the default Solver # post-stage callback to the DomainManager.setup_domain # method. This method is responsible to computing the new cell # size and doing any periodicity checks if needed. solver.add_post_stage_callback( nnps.update_domain ) # inform NNPS if it's working in parallel if self.num_procs > 1: nnps.set_in_parallel(True) dt = options.time_step if dt is not None: solver.set_time_step(dt) tf = options.final_time if tf is not None: solver.set_final_time(tf) solver.set_max_steps(self.options.max_steps) # Setup the solver output file name fname = options.fname if in_parallel(): rank = self.rank if self.num_procs > 1: fname += '_' + str(rank) # set the rank for the solver solver.rank = self.rank solver.pid = self.rank solver.comm = self.comm # set the in parallel flag for the solver if self.num_procs > 1: solver.in_parallel = True # output file name solver.set_output_fname(fname) solver.set_compress_output(options.compress_output) # disable_output solver.set_disable_output(options.disable_output) # output print frequency if options.freq is not None: solver.set_print_freq(options.freq) # output printing level (default is not detailed) if options.detailed_output is not None: solver.set_output_printing_level(options.detailed_output) # solver output behaviour in parallel if options.output_dump_remote: solver.set_output_only_real( False ) # output directory solver.set_output_directory(abspath(options.output_dir)) self._message("Generating output in %s"%self.output_dir) # set parallel output mode if options.parallel_output_mode is not None: solver.set_parallel_output_mode(options.parallel_output_mode) # Set the adaptive timestep if options.adaptive_timestep is not None: solver.set_adaptive_timestep(options.adaptive_timestep) # set solver cfl number solver.set_cfl(options.cfl) if options.n_damp is not None: solver.set_n_damp(options.n_damp) # setup the solver. This is where the code is compiled solver.setup( particles=self.particles, equations=self.equations, nnps=nnps, kernel=kernel, fixed_h=fixed_h ) # add solver interfaces self.command_manager = CommandManager(solver, self.comm) solver.set_command_handler(self.command_manager.execute_commands) if self.rank == 0: # commandline interface if options.cmd_line: from pysph.solver.solver_interfaces import CommandlineInterface self.command_manager.add_interface(CommandlineInterface().start) # XML-RPC interface if options.xml_rpc: from pysph.solver.solver_interfaces import XMLRPCInterface addr = options.xml_rpc idx = addr.find(':') host = "0.0.0.0" if idx == -1 else addr[:idx] port = int(addr[idx+1:]) self.command_manager.add_interface(XMLRPCInterface((host,port)).start) # python MultiProcessing interface if options.multiproc: from pysph.solver.solver_interfaces import MultiprocessingInterface addr = options.multiproc idx = addr.find('@') authkey = "pysph" if idx == -1 else addr[:idx] addr = addr[idx+1:] idx = addr.find(':') host = "0.0.0.0" if idx == -1 else addr[:idx] port = addr[idx+1:] if port[-1] == '+': try_next_port = True port = port[:-1] else: try_next_port = False port = int(port) interface = MultiprocessingInterface( (host,port), authkey.encode(), try_next_port) self.command_manager.add_interface(interface.start) logger.info('started multiprocessing interface on %s'%( interface.address,)) def _setup_parallel_manager_and_initial_load_balance(self): """This will automatically distribute the particles among processors if this is a parallel run. """ # Instantiate the Parallel Manager here and do an initial LB num_procs = self.num_procs options = self.options solver = self.solver comm = self.comm self.parallel_manager = None if num_procs > 1: options = self.options if options.with_zoltan: if not (has_zoltan() and has_mpi()): raise RuntimeError("Cannot run in parallel!") else: raise ValueError("""Sorry. You're stuck with Zoltan for now use the option '--with-zoltan' for parallel runs """) # create the parallel manager obj_weight_dim = "0" if options.zoltan_weights: obj_weight_dim = "1" zoltan_lb_method = options.zoltan_lb_method zoltan_obj_wgt_dim = obj_weight_dim # ghost layers ghost_layers = options.ghost_layers # radius scale for the parallel update radius_scale = options.parallel_scale_factor*solver.kernel.radius_scale self.parallel_manager = pm = ZoltanParallelManagerGeometric( dim=solver.dim, particles=self.particles, comm=comm, lb_method=zoltan_lb_method, obj_weight_dim=obj_weight_dim, ghost_layers=ghost_layers, update_cell_sizes=options.update_cell_sizes, radius_scale=radius_scale, ) ### ADDITIONAL LOAD BALANCING FUNCTIONS FOR ZOLTAN ### # RCB lock directions if options.zoltan_rcb_lock_directions: pm.set_zoltan_rcb_lock_directions() if options.zoltan_rcb_reuse: pm.set_zoltan_rcb_reuse() if options.zoltan_rcb_rectilinear: pm.set_zoltan_rcb_rectilinear_blocks() if options.zoltan_rcb_set_direction > 0: pm.set_zoltan_rcb_directions( str(options.zoltan_rcb_set_direction) ) # set zoltan options pm.pz.Zoltan_Set_Param("DEBUG_LEVEL", options.zoltan_debug_level) pm.pz.Zoltan_Set_Param("DEBUG_MEMORY", "0") # do an initial load balance pm.update() pm.initial_update = False # set subsequent load balancing frequency lb_freq = options.lb_freq if lb_freq < 1 : raise ValueError("Invalid lb_freq %d"%lb_freq) pm.set_lb_freq( lb_freq ) # wait till the initial partition is done comm.barrier() # set the solver's parallel manager solver.set_parallel_manager(self.parallel_manager) def _setup_solver_callbacks(self, obj): """Setup any solver callbacks given an object with any of `pre_step`, `post_step' and `post_stage` """ if is_overloaded_method(obj.pre_step): self.solver.add_pre_step_callback(obj.pre_step) if is_overloaded_method(obj.post_stage): self.solver.add_post_stage_callback(obj.post_stage) if is_overloaded_method(obj.post_step): self.solver.add_post_step_callback(obj.post_step) def _message(self, msg): if self.options.quiet: return if self.num_procs == 1: logger.info(msg) print(msg) elif (self.num_procs > 1 and self.rank in (0,1)): s = "Rank %d: %s"%(self.rank, msg) logger.info(s) print(s) def _write_info(self, filename, **kw): """Write the information dictionary to given filename. Any extra keyword arguments are written to the file. """ info = dict( fname=self.fname, output_dir=self.output_dir, args=self.args ) info.update(kw) json.dump(info, open(filename, 'w')) ###################################################################### # Public interface. ######################################################################
[docs] def add_tool(self, tool): """Add a `Tool` instance to the application. """ self._setup_solver_callbacks(tool) self.tools.append(tool)
[docs] def dump_code(self, file): """Dump the generated code to given file. """ file.write(self.solver.sph_eval.ext_mod.code)
@property def info_filename(self): return abspath(join(self.output_dir, self.fname + '.info'))
[docs] def initialize(self): """Called on the constructor, set constants etc. up here if needed. """ pass
@property def output_files(self): return get_files(self.output_dir, self.fname)
[docs] def read_info(self, fname_or_dir): """Read the information from the given info file (or directory containing the info file, the first found info file will be used). """ if isdir(fname_or_dir): fname_or_dir = glob.glob(join(fname_or_dir, "*.info"))[0] info_dir = dirname(fname_or_dir) with open(fname_or_dir, 'r') as f: info = json.load(f) self.fname = info.get('fname', self.fname) output_dir = info.get('output_dir', self.output_dir) if realpath(info_dir) != realpath(output_dir): # Happens if someone moved the directory! self.output_dir = info_dir info['output_dir'] = info_dir else: self.output_dir = output_dir self.args = info.get('args', self.args) self._parse_command_line(force=True) return info
[docs] def run(self, argv=None): """Run the application. """ if argv is not None: self.set_args(argv) if self.solver is None: start_time = time.time() self._parse_command_line() self._setup_logging() self.solver = self.create_solver() msg = "Solver is None, you may have forgotten to return it!" assert self.solver is not None, msg self.equations = self.create_equations() self._create_particles(self.create_particles) # This must be done before the initial load balancing # as the inlets will create new particles. if is_overloaded_method(self.create_inlet_outlet): self._create_inlet_outlet(self.create_inlet_outlet) if self.domain is None: self.domain = self.create_domain() self.nnps = self.create_nnps() self._configure() self._setup_solver_callbacks(self) for tool in self.create_tools(): self.add_tool(tool) end_time = time.time() setup_duration = end_time - start_time self._message("Setup took: %.5f secs"%(setup_duration)) self._write_info( self.info_filename, completed=False, cpu_time=0 ) start_time = time.time() self.solver.solve(not self.options.quiet) end_time = time.time() run_duration = end_time - start_time self._message("Run took: %.5f secs"%(run_duration)) self._write_info( self.info_filename, completed=True, cpu_time=run_duration )
def set_args(self, args): self.args = args
[docs] def setup(self, solver, equations, nnps=None, inlet_outlet_factory=None, particle_factory=None, *args, **kwargs): """Setup the application's solver. This will parse the command line arguments (if this is not called from within an IPython notebook or shell) and then using those parameters and any additional parameters and call the solver's setup method. Parameters ---------- solver: pysph.solver.solver.Solver The solver instance. equations: list A list of Groups/Equations. nnps: pysph.base.nnps.NNPS Optional NNPS instance. If None is given a default NNPS is created. inlet_outlet_factory: callable or None The `inlet_outlet_factory` is passed a dictionary of the particle arrays. The factory should return a list of inlets and outlets. particle_factory : callable or None If supplied, particles will be created for the solver using the particle arrays returned by the callable. Else particles for the solver need to be set before calling this method args: extra positional arguments passed on to the `particle_factory`. kwargs: extra keyword arguments passed to the `particle_factory`. Examples -------- >>> def create_particles(): ... ... ... >>> solver = Solver(...) >>> equations = [...] >>> app = Application() >>> app.setup(solver=solver, equations=equations, ... particle_factory=create_particles) >>> app.run() """ start_time = time.time() self.solver = solver self.equations = equations solver_opts = solver.get_options(self.arg_parse) self._parse_command_line() self._setup_logging() # Create particles either from scratch or restart self._create_particles(particle_factory, *args, **kwargs) # This must be done before the initial load balancing # as the inlets will create new particles. self._create_inlet_outlet(inlet_outlet_factory) if nnps is not None: self.nnps = nnps self._configure() end_time = time.time() setup_duration = end_time - start_time self._message("Setup took: %.5f secs"%(setup_duration)) self._write_info(self.info_filename, completed=False, cpu_time=0)
###################################################################### # User methods that could be overloaded. ######################################################################
[docs] def add_user_options(self, group): """Add any user-defined options to the given option group. Note ---- This uses the `argparse` module. """ pass
[docs] def configure_scheme(self): """This is called after ``consume_user_options`` is called. One can configure the SPH scheme here as at this point all the command line options are known. """ pass
[docs] def consume_user_options(self): """This is called right after the command line arguments are parsed. All the parsed options are available in ``self.options`` and can be used in this method. This is meant to be overridden by users to setup any internal variables etc. that depend on the command line arguments passed. Note that this method is called well before the solver or particles are created. """ pass
[docs] def create_domain(self): """Create a `pysph.nnps.DomainManager` and return it if needed. This is used for periodic domains etc. Note that if the domain is passed to ``__init__``, then this method is not called. """ return None
[docs] def create_inlet_outlet(self, particle_arrays): """Create inlet and outlet objects and return them as a list. The method is passed a dictionary of particle arrays keyed on the name of the particle array. """ pass
[docs] def create_equations(self): """Create the equations to be used and return them. """ if self.scheme is not None: return self.scheme.get_equations() else: msg = "Application.create_equations method must be overloaded." raise NotImplementedError(msg)
[docs] def create_nnps(self): """Create any NNPS if desired and return it, else a default NNPS will be created automatically. """ return None
[docs] def create_particles(self): """Create particle arrays and return a list of them. """ message = "Application.create_particles method must be overloaded." raise NotImplementedError(message)
[docs] def create_scheme(self): """Create a suitable SPH scheme and return it. Note that this method is called after the arguments are all processed and after `consume_user_options` is called. """ return None
[docs] def create_solver(self): """Create the solver and return it. """ if self.scheme is not None: return self.scheme.get_solver() else: msg = "Application.create_solver method must be overloaded." raise NotImplementedError(msg)
[docs] def create_tools(self): """Create any tools and return a sequence of them. This method is called after particles/inlets etc. are all setup, configured etc. """ return []
[docs] def pre_step(self, solver): """If overloaded, this is called automatically before each integrator step. The method is passed the solver instance. """ pass
[docs] def post_stage(self, current_time, dt, stage): """If overloaded, this is called automatically after each integrator stage, i.e. if the integrator is a two stage integrator it will be called after the first and second stages. The method is passed (current_time, dt, stage). See the the `Integrator.one_timestep` methods for examples of how this is called. """ pass
[docs] def post_step(self, solver): """If overloaded, this is called automatically after each integrator step. The method is passed the solver instance. """ pass
[docs] def post_process(self, info_fname_or_directory): """Given an info filename or a directory containing the info file, read the information and do any post-processing of the results. Please overload the method to perform any processing. The info file has a few useful attributes and can be read using the `read_info` method. The `output_files` property should provide the output files generated. """ print('Overload this method to post-process the results.')