Models CollaborativeFilteringModel¶
-
class
CollaborativeFilteringModel
¶ Entity CollaborativeFilteringModel
Attributes
last_read_date Read-only property - Last time this model’s data was accessed. name Set or get the name of the model object. status Read-only property - Current model life cycle status. Methods
__init__(self[, name, _info]) Create a new Collaborative Filtering (ALS) model. predict(self, frame, input_source_column_name, input_dest_column_name[, ...]) [BETA] Collaborative Filtering Predict (ALS). recommend(self, entity_id[, number_of_recommendations, recommend_products]) [BETA] Collaborative Filtering Predict (ALS). score(self, user_id, item_id) [BETA] Collaborative Filtering Predict (ALS). train(self, frame, source_column_name, dest_column_name, weight_column_name) Collaborative filtering (ALS) model
-
__init__
(self, name=None)¶ Create a new Collaborative Filtering (ALS) model.
Parameters: name : unicode (default=None)
User supplied name.
Returns: : Model
For details about Collaborative Filter (ALS) modelling, see Collaborative Filter.
Examples
>>> model = ta.CollaborativeFilteringModel() [===Job Progress===] >>> model.train(edge_frame, 'source', 'dest', 'weight') [===Job Progress===] >>> model.score(1,5) [===Job Progress===] >>> recommendations = model.recommend(1, 3, True) [===Job Progress===] >>> recommendations [{u'rating': 0.04854799984010311, u'product': 4, u'user': 1}, {u'rating': 0.04045666535703035, u'product': 3, u'user': 1}, {u'rating': 0.030060528471388848, u'product': 5, u'user': 1}] >>> recommendations = model.recommend(5, 2, False) [===Job Progress===]