CollaborativeFilteringModel predict¶
-
predict
(self, frame, input_source_column_name, input_dest_column_name, output_user_column_name='user', output_product_column_name='product', output_rating_column_name='rating')¶ [BETA] Collaborative Filtering Predict (ALS).
Parameters: frame : Frame
input_source_column_name : unicode
source column name.
input_dest_column_name : unicode
destination column name.
output_user_column_name : unicode (default=user)
A user column name for the output frame
output_product_column_name : unicode (default=product)
A product column name for the output frame
output_rating_column_name : unicode (default=rating)
A rating column name for the output frame
Returns: : Frame
Returns a double representing the probability if the user(i) to like product (j)
See Collaborative Filtering Train for more information.
Examples
>>> model = ta.CollaborativeFilteringModel() [===Job Progress===] >>> model.train(edge_frame, 'source', 'dest', 'weight') [===Job Progress===]
>>> result = model.predict(edge_frame_predict, 'source', 'dest') [===Job Progress===] >>> result.inspect() [#] user product rating ==================================== [0] 1 4 0.0485403053463 [1] 1 5 0.0300555229187 [2] 2 5 0.00397346867248 [3] 1 3 0.0404502525926
[===Job Progress===]