PrincipalComponentsModel train¶
-
train
(self, frame, observation_columns, mean_centered=True, k=None)¶ Build principal components model.
Parameters: frame : Frame
A frame to train the model on.
observation_columns : list
List of column(s) containing the observations.
mean_centered : bool (default=True)
Option to mean center the columns
k : int32 (default=None)
Principal component count. Default is the number of observation columns
Returns: : dict
- dictionary
|A dictionary with trained Principal Components Model with the following keys: |‘column_means’: the list of the means of each observation column |‘k’: number of principal components used to train the model |‘mean_centered’: Flag indicating if the model was mean centered during training |‘observation_columns’: the list of observation columns on which the model was trained, |‘right_singular_vectors’: list of a list storing the right singular vectors of the specified columns of the input frame |‘singular_values’: list storing the singular values of the specified columns of the input frame
Creating a PrincipalComponents Model using the observation columns.
Examples
See here for examples.