| Home | Trees | Indices | Help |
|
|---|
|
|
object --+
|
??.instance --+
|
CvStatModel --+
|
CvRTrees
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
Inherited from Inherited from Inherited from |
|||
|
|||
__instance_size__ = 64
|
|||
|
|||
| this | |||
|
Inherited from |
|||
|
|||
__init__( (object)arg1) -> None :
C++ signature :
void __init__(_object*)
|
calc_error( (CvRTrees)arg1, (CvMLData)_data, (object)type [, (vector_float32)resp=None]) -> float :
C++ signature :
float calc_error(CvRTrees {lvalue},CvMLData*,int [,std::vector<float, std::allocator<float> >*=None])
calc_error( (CvRTrees)arg1, (CvMLData)_data, (object)type [, (vector_float32)resp=None]) -> float :
C++ signature :
float calc_error(CvRTrees_wrapper {lvalue},CvMLData*,int [,std::vector<float, std::allocator<float> >*=None])
|
clear( (CvRTrees)arg1) -> None :
C++ signature :
void clear(CvRTrees {lvalue})
clear( (CvRTrees)arg1) -> None :
C++ signature :
void clear(CvRTrees_wrapper {lvalue})
|
get_active_var_mask( (CvRTrees)arg1) -> CvMat :
C++ signature :
CvMat* get_active_var_mask(CvRTrees {lvalue})
|
get_proximity( (CvRTrees)inst, (Mat)sample1, (Mat)sample2 [, (Mat)missing1=Mat() [, (Mat)missing2=Mat()]]) -> object :
Argument 'sample1':
C++ type: ::CvMat const *
Python type: Mat
Argument 'sample2':
C++ type: ::CvMat const *
Python type: Mat
Argument 'missing1':
C++ type: ::CvMat const *
Python type: Mat
Argument 'missing2':
C++ type: ::CvMat const *
Python type: Mat
C++ signature :
boost::python::api::object get_proximity(CvRTrees,cv::Mat {lvalue},cv::Mat {lvalue} [,cv::Mat=Mat() [,cv::Mat=Mat()]])
|
get_train_error( (CvRTrees)arg1) -> float :
C++ signature :
float get_train_error(CvRTrees {lvalue})
get_train_error( (CvRTrees)arg1) -> float :
C++ signature :
float get_train_error(CvRTrees_wrapper {lvalue})
|
get_tree( (CvRTrees)arg1, (object)i) -> CvForestTree :
C++ signature :
CvForestTree* get_tree(CvRTrees {lvalue},int)
|
get_tree_count( (CvRTrees)arg1) -> int :
C++ signature :
int get_tree_count(CvRTrees {lvalue})
|
get_var_importance( (CvRTrees)arg1) -> CvMat :
C++ signature :
CvMat const* get_var_importance(CvRTrees {lvalue})
get_var_importance( (CvRTrees)arg1) -> CvMat :
C++ signature :
CvMat const* get_var_importance(CvRTrees_wrapper {lvalue})
|
load( (CvRTrees)arg1, (str)filename [, (str)name=None]) -> None :
C++ signature :
void load(CvRTrees {lvalue},char const* [,char const*=None])
load( (CvRTrees)arg1, (str)filename [, (str)name=None]) -> None :
C++ signature :
void load(CvRTrees_wrapper {lvalue},char const* [,char const*=None])
|
predict( (CvRTrees)inst, (Mat)sample [, (Mat)missing=Mat()]) -> object :
Argument 'sample':
C++ type: ::CvMat const *
Python type: Mat
Argument 'missing':
C++ type: ::CvMat const *
Python type: Mat
C++ signature :
boost::python::api::object predict(CvRTrees,cv::Mat {lvalue} [,cv::Mat=Mat()])
predict( (CvRTrees)arg1, (Mat)sample [, (Mat)missing=Mat()]) -> float :
C++ signature :
float predict(CvRTrees {lvalue},cv::Mat [,cv::Mat=Mat()])
predict( (CvRTrees)arg1, (Mat)sample [, (Mat)missing=Mat()]) -> float :
C++ signature :
float predict(CvRTrees_wrapper {lvalue},cv::Mat [,cv::Mat=Mat()])
|
predict_prob( (CvRTrees)inst, (Mat)sample [, (Mat)missing=Mat()]) -> object :
Argument 'sample':
C++ type: ::CvMat const *
Python type: Mat
Argument 'missing':
C++ type: ::CvMat const *
Python type: Mat
C++ signature :
boost::python::api::object predict_prob(CvRTrees,cv::Mat {lvalue} [,cv::Mat=Mat()])
predict_prob( (CvRTrees)arg1, (Mat)sample [, (Mat)missing=Mat()]) -> float :
C++ signature :
float predict_prob(CvRTrees {lvalue},cv::Mat [,cv::Mat=Mat()])
predict_prob( (CvRTrees)arg1, (Mat)sample [, (Mat)missing=Mat()]) -> float :
C++ signature :
float predict_prob(CvRTrees_wrapper {lvalue},cv::Mat [,cv::Mat=Mat()])
|
read( (CvRTrees)inst, (FileStorage)fs, (FileNode)node) -> None :
Argument 'fs':
C++ type: ::CvFileStorage *
Python type: FileStorage
Argument 'node':
C++ type: ::CvFileNode *
Python type: FileNode
C++ signature :
void read(CvRTrees {lvalue},cv::FileStorage {lvalue},cv::FileNode {lvalue})
|
save( (CvRTrees)arg1, (str)filename [, (str)name=None]) -> None :
C++ signature :
void save(CvRTrees {lvalue},char const* [,char const*=None])
save( (CvRTrees)arg1, (str)filename [, (str)name=None]) -> None :
C++ signature :
void save(CvRTrees_wrapper {lvalue},char const* [,char const*=None])
|
train( (CvRTrees)inst, (Mat)_train_data, (object)_tflag, (Mat)_responses [, (Mat)_var_idx=Mat() [, (Mat)_sample_idx=Mat() [, (Mat)_var_type=Mat() [, (Mat)_missing_mask=Mat() [, (CvRTParams)params=<pyopencv.ml_ext.CvRTParams object at 0x020417A0>]]]]]) -> object :
Argument '_train_data':
C++ type: ::CvMat const *
Python type: Mat
Argument '_responses':
C++ type: ::CvMat const *
Python type: Mat
Argument '_var_idx':
C++ type: ::CvMat const *
Python type: Mat
Argument '_sample_idx':
C++ type: ::CvMat const *
Python type: Mat
Argument '_var_type':
C++ type: ::CvMat const *
Python type: Mat
Argument '_missing_mask':
C++ type: ::CvMat const *
Python type: Mat
C++ signature :
boost::python::api::object train(CvRTrees {lvalue},cv::Mat {lvalue},int,cv::Mat {lvalue} [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,CvRTParams=<pyopencv.ml_ext.CvRTParams object at 0x020417A0>]]]]])
train( (CvRTrees)arg1, (CvMLData)data [, (CvRTParams)params=<pyopencv.ml_ext.CvRTParams object at 0x02041730>]) -> bool :
C++ signature :
bool train(CvRTrees {lvalue},CvMLData* [,CvRTParams=<pyopencv.ml_ext.CvRTParams object at 0x02041730>])
train( (CvRTrees)arg1, (CvMLData)data [, (CvRTParams)params=<pyopencv.ml_ext.CvRTParams object at 0x02041730>]) -> bool :
C++ signature :
bool train(CvRTrees_wrapper {lvalue},CvMLData* [,CvRTParams=<pyopencv.ml_ext.CvRTParams object at 0x02041730>])
train( (CvRTrees)arg1, (Mat)_train_data, (object)_tflag, (Mat)_responses [, (Mat)_var_idx=Mat() [, (Mat)_sample_idx=Mat() [, (Mat)_var_type=Mat() [, (Mat)_missing_mask=Mat() [, (CvRTParams)params=<pyopencv.ml_ext.CvRTParams object at 0x020416C0>]]]]]) -> bool :
C++ signature :
bool train(CvRTrees {lvalue},cv::Mat,int,cv::Mat [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,CvRTParams=<pyopencv.ml_ext.CvRTParams object at 0x020416C0>]]]]])
train( (CvRTrees)arg1, (Mat)_train_data, (object)_tflag, (Mat)_responses [, (Mat)_var_idx=Mat() [, (Mat)_sample_idx=Mat() [, (Mat)_var_type=Mat() [, (Mat)_missing_mask=Mat() [, (CvRTParams)params=<pyopencv.ml_ext.CvRTParams object at 0x020416C0>]]]]]) -> bool :
C++ signature :
bool train(CvRTrees_wrapper {lvalue},cv::Mat,int,cv::Mat [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,CvRTParams=<pyopencv.ml_ext.CvRTParams object at 0x020416C0>]]]]])
|
write( (CvRTrees)inst, (FileStorage)fs, (str)name) -> None :
Argument 'fs':
C++ type: ::CvFileStorage *
Python type: FileStorage
C++ signature :
void write(CvRTrees,cv::FileStorage {lvalue},char const*)
|
|
|||
this
|
| Home | Trees | Indices | Help |
|
|---|
| Generated by Epydoc 3.0.1 on Sat Sep 25 18:31:10 2010 | http://epydoc.sourceforge.net |