Home | Trees | Indices | Help |
|
---|
|
object --+ | ??.instance --+ | CvStatModel --+ | CvRTrees
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
Inherited from Inherited from Inherited from |
|
|||
__instance_size__ = 64
|
|
|||
this | |||
Inherited from |
|
__init__( (object)arg1) -> None : C++ signature : void __init__(_object*)
|
calc_error( (CvRTrees)arg1, (CvMLData)_data, (object)type [, (vector_float32)resp=None]) -> float : C++ signature : float calc_error(CvRTrees {lvalue},CvMLData*,int [,std::vector<float, std::allocator<float> >*=None]) calc_error( (CvRTrees)arg1, (CvMLData)_data, (object)type [, (vector_float32)resp=None]) -> float : C++ signature : float calc_error(CvRTrees_wrapper {lvalue},CvMLData*,int [,std::vector<float, std::allocator<float> >*=None]) |
clear( (CvRTrees)arg1) -> None : C++ signature : void clear(CvRTrees {lvalue}) clear( (CvRTrees)arg1) -> None : C++ signature : void clear(CvRTrees_wrapper {lvalue})
|
get_active_var_mask( (CvRTrees)arg1) -> CvMat : C++ signature : CvMat* get_active_var_mask(CvRTrees {lvalue}) |
get_proximity( (CvRTrees)inst, (Mat)sample1, (Mat)sample2 [, (Mat)missing1=Mat() [, (Mat)missing2=Mat()]]) -> object : Argument 'sample1': C++ type: ::CvMat const * Python type: Mat Argument 'sample2': C++ type: ::CvMat const * Python type: Mat Argument 'missing1': C++ type: ::CvMat const * Python type: Mat Argument 'missing2': C++ type: ::CvMat const * Python type: Mat C++ signature : boost::python::api::object get_proximity(CvRTrees,cv::Mat {lvalue},cv::Mat {lvalue} [,cv::Mat=Mat() [,cv::Mat=Mat()]]) |
get_train_error( (CvRTrees)arg1) -> float : C++ signature : float get_train_error(CvRTrees {lvalue}) get_train_error( (CvRTrees)arg1) -> float : C++ signature : float get_train_error(CvRTrees_wrapper {lvalue}) |
get_tree( (CvRTrees)arg1, (object)i) -> CvForestTree : C++ signature : CvForestTree* get_tree(CvRTrees {lvalue},int) |
get_tree_count( (CvRTrees)arg1) -> int : C++ signature : int get_tree_count(CvRTrees {lvalue}) |
get_var_importance( (CvRTrees)arg1) -> CvMat : C++ signature : CvMat const* get_var_importance(CvRTrees {lvalue}) get_var_importance( (CvRTrees)arg1) -> CvMat : C++ signature : CvMat const* get_var_importance(CvRTrees_wrapper {lvalue}) |
load( (CvRTrees)arg1, (str)filename [, (str)name=None]) -> None : C++ signature : void load(CvRTrees {lvalue},char const* [,char const*=None]) load( (CvRTrees)arg1, (str)filename [, (str)name=None]) -> None : C++ signature : void load(CvRTrees_wrapper {lvalue},char const* [,char const*=None])
|
predict( (CvRTrees)inst, (Mat)sample [, (Mat)missing=Mat()]) -> object : Argument 'sample': C++ type: ::CvMat const * Python type: Mat Argument 'missing': C++ type: ::CvMat const * Python type: Mat C++ signature : boost::python::api::object predict(CvRTrees,cv::Mat {lvalue} [,cv::Mat=Mat()]) predict( (CvRTrees)arg1, (Mat)sample [, (Mat)missing=Mat()]) -> float : C++ signature : float predict(CvRTrees {lvalue},cv::Mat [,cv::Mat=Mat()]) predict( (CvRTrees)arg1, (Mat)sample [, (Mat)missing=Mat()]) -> float : C++ signature : float predict(CvRTrees_wrapper {lvalue},cv::Mat [,cv::Mat=Mat()]) |
predict_prob( (CvRTrees)inst, (Mat)sample [, (Mat)missing=Mat()]) -> object : Argument 'sample': C++ type: ::CvMat const * Python type: Mat Argument 'missing': C++ type: ::CvMat const * Python type: Mat C++ signature : boost::python::api::object predict_prob(CvRTrees,cv::Mat {lvalue} [,cv::Mat=Mat()]) predict_prob( (CvRTrees)arg1, (Mat)sample [, (Mat)missing=Mat()]) -> float : C++ signature : float predict_prob(CvRTrees {lvalue},cv::Mat [,cv::Mat=Mat()]) predict_prob( (CvRTrees)arg1, (Mat)sample [, (Mat)missing=Mat()]) -> float : C++ signature : float predict_prob(CvRTrees_wrapper {lvalue},cv::Mat [,cv::Mat=Mat()]) |
read( (CvRTrees)inst, (FileStorage)fs, (FileNode)node) -> None : Argument 'fs': C++ type: ::CvFileStorage * Python type: FileStorage Argument 'node': C++ type: ::CvFileNode * Python type: FileNode C++ signature : void read(CvRTrees {lvalue},cv::FileStorage {lvalue},cv::FileNode {lvalue})
|
save( (CvRTrees)arg1, (str)filename [, (str)name=None]) -> None : C++ signature : void save(CvRTrees {lvalue},char const* [,char const*=None]) save( (CvRTrees)arg1, (str)filename [, (str)name=None]) -> None : C++ signature : void save(CvRTrees_wrapper {lvalue},char const* [,char const*=None])
|
train( (CvRTrees)inst, (Mat)_train_data, (object)_tflag, (Mat)_responses [, (Mat)_var_idx=Mat() [, (Mat)_sample_idx=Mat() [, (Mat)_var_type=Mat() [, (Mat)_missing_mask=Mat() [, (CvRTParams)params=<pyopencv.ml_ext.CvRTParams object at 0x020417A0>]]]]]) -> object : Argument '_train_data': C++ type: ::CvMat const * Python type: Mat Argument '_responses': C++ type: ::CvMat const * Python type: Mat Argument '_var_idx': C++ type: ::CvMat const * Python type: Mat Argument '_sample_idx': C++ type: ::CvMat const * Python type: Mat Argument '_var_type': C++ type: ::CvMat const * Python type: Mat Argument '_missing_mask': C++ type: ::CvMat const * Python type: Mat C++ signature : boost::python::api::object train(CvRTrees {lvalue},cv::Mat {lvalue},int,cv::Mat {lvalue} [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,CvRTParams=<pyopencv.ml_ext.CvRTParams object at 0x020417A0>]]]]]) train( (CvRTrees)arg1, (CvMLData)data [, (CvRTParams)params=<pyopencv.ml_ext.CvRTParams object at 0x02041730>]) -> bool : C++ signature : bool train(CvRTrees {lvalue},CvMLData* [,CvRTParams=<pyopencv.ml_ext.CvRTParams object at 0x02041730>]) train( (CvRTrees)arg1, (CvMLData)data [, (CvRTParams)params=<pyopencv.ml_ext.CvRTParams object at 0x02041730>]) -> bool : C++ signature : bool train(CvRTrees_wrapper {lvalue},CvMLData* [,CvRTParams=<pyopencv.ml_ext.CvRTParams object at 0x02041730>]) train( (CvRTrees)arg1, (Mat)_train_data, (object)_tflag, (Mat)_responses [, (Mat)_var_idx=Mat() [, (Mat)_sample_idx=Mat() [, (Mat)_var_type=Mat() [, (Mat)_missing_mask=Mat() [, (CvRTParams)params=<pyopencv.ml_ext.CvRTParams object at 0x020416C0>]]]]]) -> bool : C++ signature : bool train(CvRTrees {lvalue},cv::Mat,int,cv::Mat [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,CvRTParams=<pyopencv.ml_ext.CvRTParams object at 0x020416C0>]]]]]) train( (CvRTrees)arg1, (Mat)_train_data, (object)_tflag, (Mat)_responses [, (Mat)_var_idx=Mat() [, (Mat)_sample_idx=Mat() [, (Mat)_var_type=Mat() [, (Mat)_missing_mask=Mat() [, (CvRTParams)params=<pyopencv.ml_ext.CvRTParams object at 0x020416C0>]]]]]) -> bool : C++ signature : bool train(CvRTrees_wrapper {lvalue},cv::Mat,int,cv::Mat [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,CvRTParams=<pyopencv.ml_ext.CvRTParams object at 0x020416C0>]]]]]) |
write( (CvRTrees)inst, (FileStorage)fs, (str)name) -> None : Argument 'fs': C++ type: ::CvFileStorage * Python type: FileStorage C++ signature : void write(CvRTrees,cv::FileStorage {lvalue},char const*)
|
|
this
|
Home | Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Sat Sep 25 18:31:10 2010 | http://epydoc.sourceforge.net |