Home | Trees | Indices | Help |
|
---|
|
object --+ | ??.instance --+ | CvStatModel --+ | CvRTrees --+ | CvERTrees
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
Inherited from Inherited from Inherited from Inherited from |
|
|||
Inherited from |
|
|||
this | |||
Inherited from |
|
__init__( (object)arg1) -> None : C++ signature : void __init__(_object*)
|
calc_error( (CvERTrees)arg1, (CvMLData)_data, (object)type [, (vector_float32)resp=None]) -> float : C++ signature : float calc_error(CvERTrees {lvalue},CvMLData*,int [,std::vector<float, std::allocator<float> >*=None]) calc_error( (CvERTrees)arg1, (CvMLData)_data, (object)type [, (vector_float32)resp=None]) -> float : C++ signature : float calc_error(CvERTrees_wrapper {lvalue},CvMLData*,int [,std::vector<float, std::allocator<float> >*=None])
|
clear( (CvERTrees)arg1) -> None : C++ signature : void clear(CvERTrees {lvalue}) clear( (CvERTrees)arg1) -> None : C++ signature : void clear(CvERTrees_wrapper {lvalue})
|
get_proximity( (CvRTrees)inst, (Mat)sample1, (Mat)sample2 [, (Mat)missing1=Mat() [, (Mat)missing2=Mat()]]) -> object : Argument 'sample1': C++ type: ::CvMat const * Python type: Mat Argument 'sample2': C++ type: ::CvMat const * Python type: Mat Argument 'missing1': C++ type: ::CvMat const * Python type: Mat Argument 'missing2': C++ type: ::CvMat const * Python type: Mat C++ signature : boost::python::api::object get_proximity(CvRTrees,cv::Mat {lvalue},cv::Mat {lvalue} [,cv::Mat=Mat() [,cv::Mat=Mat()]])
|
get_train_error( (CvERTrees)arg1) -> float : C++ signature : float get_train_error(CvERTrees {lvalue}) get_train_error( (CvERTrees)arg1) -> float : C++ signature : float get_train_error(CvERTrees_wrapper {lvalue})
|
get_var_importance( (CvERTrees)arg1) -> CvMat : C++ signature : CvMat const* get_var_importance(CvERTrees {lvalue}) get_var_importance( (CvERTrees)arg1) -> CvMat : C++ signature : CvMat const* get_var_importance(CvERTrees_wrapper {lvalue})
|
load( (CvERTrees)arg1, (str)filename [, (str)name=None]) -> None : C++ signature : void load(CvERTrees {lvalue},char const* [,char const*=None]) load( (CvERTrees)arg1, (str)filename [, (str)name=None]) -> None : C++ signature : void load(CvERTrees_wrapper {lvalue},char const* [,char const*=None])
|
predict( (CvRTrees)inst, (Mat)sample [, (Mat)missing=Mat()]) -> object : Argument 'sample': C++ type: ::CvMat const * Python type: Mat Argument 'missing': C++ type: ::CvMat const * Python type: Mat C++ signature : boost::python::api::object predict(CvRTrees,cv::Mat {lvalue} [,cv::Mat=Mat()]) predict( (CvERTrees)arg1, (Mat)sample [, (Mat)missing=Mat()]) -> float : C++ signature : float predict(CvERTrees {lvalue},cv::Mat [,cv::Mat=Mat()]) predict( (CvERTrees)arg1, (Mat)sample [, (Mat)missing=Mat()]) -> float : C++ signature : float predict(CvERTrees_wrapper {lvalue},cv::Mat [,cv::Mat=Mat()])
|
predict_prob( (CvRTrees)inst, (Mat)sample [, (Mat)missing=Mat()]) -> object : Argument 'sample': C++ type: ::CvMat const * Python type: Mat Argument 'missing': C++ type: ::CvMat const * Python type: Mat C++ signature : boost::python::api::object predict_prob(CvRTrees,cv::Mat {lvalue} [,cv::Mat=Mat()]) predict_prob( (CvERTrees)arg1, (Mat)sample [, (Mat)missing=Mat()]) -> float : C++ signature : float predict_prob(CvERTrees {lvalue},cv::Mat [,cv::Mat=Mat()]) predict_prob( (CvERTrees)arg1, (Mat)sample [, (Mat)missing=Mat()]) -> float : C++ signature : float predict_prob(CvERTrees_wrapper {lvalue},cv::Mat [,cv::Mat=Mat()])
|
read( (CvRTrees)inst, (FileStorage)fs, (FileNode)node) -> None : Argument 'fs': C++ type: ::CvFileStorage * Python type: FileStorage Argument 'node': C++ type: ::CvFileNode * Python type: FileNode C++ signature : void read(CvRTrees {lvalue},cv::FileStorage {lvalue},cv::FileNode {lvalue})
|
save( (CvERTrees)arg1, (str)filename [, (str)name=None]) -> None : C++ signature : void save(CvERTrees {lvalue},char const* [,char const*=None]) save( (CvERTrees)arg1, (str)filename [, (str)name=None]) -> None : C++ signature : void save(CvERTrees_wrapper {lvalue},char const* [,char const*=None])
|
train( (CvERTrees)inst, (Mat)_train_data, (object)_tflag, (Mat)_responses [, (Mat)_var_idx=Mat() [, (Mat)_sample_idx=Mat() [, (Mat)_var_type=Mat() [, (Mat)_missing_mask=Mat() [, (CvRTParams)params=<pyopencv.ml_ext.CvRTParams object at 0x020418F0>]]]]]) -> object : Argument '_train_data': C++ type: ::CvMat const * Python type: Mat Argument '_responses': C++ type: ::CvMat const * Python type: Mat Argument '_var_idx': C++ type: ::CvMat const * Python type: Mat Argument '_sample_idx': C++ type: ::CvMat const * Python type: Mat Argument '_var_type': C++ type: ::CvMat const * Python type: Mat Argument '_missing_mask': C++ type: ::CvMat const * Python type: Mat C++ signature : boost::python::api::object train(CvERTrees {lvalue},cv::Mat {lvalue},int,cv::Mat {lvalue} [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,CvRTParams=<pyopencv.ml_ext.CvRTParams object at 0x020418F0>]]]]]) train( (CvERTrees)arg1, (Mat)_train_data, (object)_tflag, (Mat)_responses [, (Mat)_var_idx=Mat() [, (Mat)_sample_idx=Mat() [, (Mat)_var_type=Mat() [, (Mat)_missing_mask=Mat() [, (CvRTParams)params=<pyopencv.ml_ext.CvRTParams object at 0x02041880>]]]]]) -> bool : C++ signature : bool train(CvERTrees {lvalue},cv::Mat,int,cv::Mat [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,CvRTParams=<pyopencv.ml_ext.CvRTParams object at 0x02041880>]]]]]) train( (CvERTrees)arg1, (Mat)_train_data, (object)_tflag, (Mat)_responses [, (Mat)_var_idx=Mat() [, (Mat)_sample_idx=Mat() [, (Mat)_var_type=Mat() [, (Mat)_missing_mask=Mat() [, (CvRTParams)params=<pyopencv.ml_ext.CvRTParams object at 0x02041880>]]]]]) -> bool : C++ signature : bool train(CvERTrees_wrapper {lvalue},cv::Mat,int,cv::Mat [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,CvRTParams=<pyopencv.ml_ext.CvRTParams object at 0x02041880>]]]]]) train( (CvERTrees)arg1, (CvMLData)data [, (CvRTParams)params=<pyopencv.ml_ext.CvRTParams object at 0x02041810>]) -> bool : C++ signature : bool train(CvERTrees {lvalue},CvMLData* [,CvRTParams=<pyopencv.ml_ext.CvRTParams object at 0x02041810>]) train( (CvERTrees)arg1, (CvMLData)data [, (CvRTParams)params=<pyopencv.ml_ext.CvRTParams object at 0x02041810>]) -> bool : C++ signature : bool train(CvERTrees_wrapper {lvalue},CvMLData* [,CvRTParams=<pyopencv.ml_ext.CvRTParams object at 0x02041810>])
|
write( (CvRTrees)inst, (FileStorage)fs, (str)name) -> None : Argument 'fs': C++ type: ::CvFileStorage * Python type: FileStorage C++ signature : void write(CvRTrees,cv::FileStorage {lvalue},char const*)
|
|
this
|
Home | Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Sat Sep 25 18:31:10 2010 | http://epydoc.sourceforge.net |