msaf.eval.process¶
-
msaf.eval.
process
(in_path, boundaries_id='sf', labels_id=None, annot_beats=False, framesync=False, feature='pcp', hier=False, save=False, out_file=None, n_jobs=4, annotator_id=0, config=None)[source]¶ Main process to evaluate algorithms’ results.
Parameters: in_path : str
Path to the dataset root folder.
boundaries_id : str
Boundaries algorithm identifier (e.g. siplca, cnmf)
labels_id : str
Labels algorithm identifier (e.g. siplca, cnmf)
ds_name : str
Name of the dataset to be evaluated (e.g. SALAMI). * stands for all.
annot_beats : boolean
Whether to use the annotated beats or not.
framesync: str
Whether to use framesync features or not (default: False -> beatsync)
feature: str
String representing the feature to be used (e.g. pcp, mfcc, tonnetz)
hier : bool
Whether to compute a hierarchical or flat segmentation.
save: boolean
Whether to save the results into the out_file csv file.
out_file: str
Path to the csv file to save the results (if None and save = True it will save the results in the default file name obtained by calling
get_results_file_name
).n_jobs: int
Number of processes to run in parallel. Only available in collection mode.
annotator_id : int
Number identifiying the annotator.
config: dict
Dictionary containing custom configuration parameters for the algorithms. If None, the default parameters are used.