Home
Trees
Indices
Help
[
hide private
]
[
frames
] |
no frames
]
[
Module Hierarchy
|
Class Hierarchy
]
Class Hierarchy
object
:
The most base type
dimer.data.AnchorAnnotation
dimer.data.AnchorDataset
dimer.data.TrainAnchorDataset
exceptions.BaseException
:
Common base class for all exceptions
exceptions.Exception
:
Common base class for all non-exit exceptions.
dimer.filelock.FileLockException
exceptions.StandardError
:
Base class for all standard Python exceptions that do not represent interpreter exiting.
exceptions.AssertionError
:
Assertion failed.
dimer.genome.bed.BedReader
dimer.genome.peak.BroadPeakReader
dimer.nnet.config_spec.CfgFactory
:
abstract class with factory method from a config file
dimer.nnet.config_spec.AESpec
dimer.nnet.config_spec.ModelSpec
dimer.nnet.config_spec.MtrainSpec
dimer.config.Configurable
:
abstract class with factory method from a config file
dimer.data.Dataset
dimer.data.AnchorDataset
dimer.data.TrainAnchorDataset
dimer.filelock.FileLock
:
A file locking mechanism that has context-manager support so you can use it in a with statement.
dimer.nnet.Layer
:
abstract layer class.
dimer.nnet.SpeedLayer
:
This layer provides an extra set of weights as a support the momentum algorithm for SGD.
dimer.nnet.autoencoder.AELayer
:
An autoencoder layer
dimer.nnet.nccn.ConvPoolLayer
:
LeNet conv-pool layer
dimer.nnet.nccn.HiddenLayer
:
Hidden layer of a feed-forward net
dimer.nnet.nccn.LogisticReg
:
A logistic regression layer
dimer.nnet.Model
:
generic model class with basic functionality
dimer.nnet.autoencoder.AEStack
:
a stack of denoising autoencoders.
dimer.nnet.autoencoder.AutoEncoder
:
Denoising autoencoder
dimer.nnet.nccn.CnnModel
dimer.nnet.monitor.Monitor
:
abstract class keep track of a set of parameters in the model or the learning process
dimer.nnet.monitor.DaeLearnMonitor
dimer.nnet.monitor.LearnMonitor
:
learning stats
dimer.nnet.monitor.RegrLearnMonitor
:
learning stats for a linear regression
dimer.nnet.monitor.WeightMonitor
:
weight and activity information on the network
dimer.genome.peak.NarrowPeakReader
dimer.nnet.base_test_classes.NpyTester
dimer.nnet.base_test_classes.ModelTester
dimer.nnet.autoencoder_tests.TestAEModel
dimer.nnet.autoencoder_tests.TestAEStackModel
dimer.nnet.nccn_tests.TestCnnModel
dimer.nnet.autoencoder_tests.TestAEModel
dimer.nnet.autoencoder_tests.TestAEStackModel
dimer.nnet.autoencoder_tests.TestAEl
dimer.nnet.nccn_tests.TestCnnModel
unittest.case.TestCase
:
A class whose instances are single test cases.
dimer.nnet.base_test_classes.CNNLayerTester
:
test class for CPLayer, HiddenLayer and LogisticRegression Layer
dimer.nnet.autoencoder_tests.TestAEl
dimer.nnet.nccn_tests.TestCPLayer
dimer.nnet.nccn_tests.TestHLayer
dimer.nnet.nccn_tests.TestLRLayer
dimer.nnet.base_test_classes.ModelTester
dimer.nnet.autoencoder_tests.TestAEModel
dimer.nnet.autoencoder_tests.TestAEStackModel
dimer.nnet.nccn_tests.TestCnnModel
dimer.nnet.cspec_tests.Test
dimer.data_tests.TestAnchorDataset
dimer.archive_tests.TestArchive
dimer.genome.bedops_tests.TestBEDMAP
dimer.data_tests.TestDataset
dimer.archive_tests.TestExp
dimer.nnet.nnet_tests.TestLr
dimer.nnet.monitor_tests.TestMonitor
dimer.data.TheanoShare
:
a dataset that can return its data as theano shared variables
dimer.data.AnchorDataset
dimer.data.TrainAnchorDataset
dimer.data.TrainDataset
:
a mixin for batch functionality, valid and train sub-dataset
dimer.data.TrainAnchorDataset
dimer.data.aAnchorDataset
:
this dataset contains various tracks of epigenetic signal in the for a set of genome sites (e.g., TSS-cenetered regions) all of the same width.
dimer.data.aaHDFArchive
tuple
:
tuple() -> empty tuple tuple(iterable) -> tuple initialized from iterable's items
unreachable
.AutoEncoderSpec
:
AutoEncoderSpec(rec_error, minepochs, maxepochs, batch_size, noise)
dimer.nnet.config_spec.AESpec
unreachable
.DataSpec
:
DataSpec(dataname, tracks, width, train_s, valid_s, labels, track_names, label_names, batch_size, train_batches, valid_batches)
dimer.nnet.config_spec.DataSpec
unreachable
.MetaParams
:
MetaParams(nkerns, rfield, pool, lreg_size)
dimer.nnet.config_spec.ModelSpec
unreachable
.MtrainSpec
:
MtrainSpec(batch_size, l1_rate, l2_rate, lr, tau, momentum_mult, nepochs, minepochs, patience)
dimer.nnet.config_spec.MtrainSpec
unreachable
.learnmonitor
:
learnmonitor(epoch, lrate, traincost, validcost)
dimer.nnet.monitor.DaeLearnMonitor
unreachable
.learnmonitor
:
learnmonitor(epoch, lrate, traincost, trainCE, trainMC, validcost, validCE, validMC)
dimer.nnet.monitor.LearnMonitor
:
learning stats
unreachable
.learnmonitor
:
learnmonitor(epoch, lrate, traincost, validcost)
dimer.nnet.monitor.RegrLearnMonitor
:
learning stats for a linear regression
unreachable
.w_monitor
:
w_monitor(epoch, layer, wshp, wmin, wmean, wmedian, wsd, wmax, bshp, bmin, bmean, bmedian, bsd, bmax)
dimer.nnet.monitor.WeightMonitor
:
weight and activity information on the network
type
:
type(object) -> the object's type type(name, bases, dict) -> a new type
abc.ABCMeta
:
Metaclass for defining Abstract Base Classes (ABCs).
Home
Trees
Indices
Help
Generated by Epydoc 3.0.1 on Wed Aug 21 01:14:52 2013
http://epydoc.sourceforge.net