Package dimer :: Module data :: Class Dataset
[hide private]
[frames] | no frames]

Class Dataset

source code

object --+
         |
        Dataset
Known Subclasses:

Instance Methods [hide private]
 
__init__(self, X, Y, T)
x.__init__(...) initializes x; see help(type(x)) for signature
source code

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __repr__, __setattr__, __sizeof__, __str__, __subclasshook__

Static Methods [hide private]
 
normalize_features(x)
transform each component of flattened X examples to 0 mean and 1 std So the values of feature f (from all examples) are 0 mean and 1 std
source code
 
fit_features(x)
transform each **component** of X so that it fits on an interval [-1, 1].
source code
Properties [hide private]
  is_labeled
  labels

Inherited from object: __class__

Method Details [hide private]

__init__(self, X, Y, T)
(Constructor)

source code 

x.__init__(...) initializes x; see help(type(x)) for signature

Overrides: object.__init__
(inherited documentation)

normalize_features(x)
Static Method

source code 
transform each component of flattened X examples to 0 mean and 1 std
So the values of feature f (from all examples) are 0 mean and 1 std

x: a ndarray of shape (nr. examples, nr. of features)
return: (the shifted input,
        the mean for each input component, the sd of each input component)
        the latter 2 are arrays of shape(<tracks>, <genome position>)

fit_features(x)
Static Method

source code 

transform each **component** of X so that it fits on an interval [-1, 1]. So the values of track t at position i are all in [-1,1]

Parameters:
  • x - a ndarray of shape (nr. examples, nr. features)
Returns:
the fitted input

Property Details [hide private]

is_labeled

Get Method:
unreachable.is_labeled(self)

labels

Get Method:
unreachable.labels(self)