User’s Guide¶

  • Simple Estimation Functions
    • Related Examples
  • Representing Probability Distributions
    • Introduction
    • Sampling Pre-made Distributions
    • Combining Distributions
    • Making Custom Distributions
  • Designing and Using Models
    • Introduction
    • Using Models and Simulations
    • Implementing Custom Simulators and Models
    • Adding Functionality to Models with Other Models
  • Sequential Monte Carlo
    • Introduction
    • Using SMCUpdater
    • Advanced Usage
  • Experiment Design Heuristics
    • Using Heuristics in Updater Loops
    • Changing Heuristic Parameters
  • Randomized Benchmarking
    • Introduction
    • Zeroth-Order Model
  • Quantum Tomography
    • Introduction
    • Bases
    • Built-in Distributions
    • Using TomographyModel
    • Built-in Heuristics
  • Learning Time-Dependent Models
    • Time-Dependent Parameters
    • Random Walk Models
    • Specifying Custom Time-Step Updates
  • Performance and Robustness Testing
    • Introduction
    • Testing Estimation Performance
    • Robustness Testing
  • Parallel Execution of Models
    • Introduction
    • Distributed Computation with IPython
    • GPGPU-based Likelihood Computation with PyOpenCL
  • Interoperability
    • Introduction
    • MATLAB Interoperability
    • Julia Interoperability

Related Topics

  • Documentation overview
    • Previous: Introduction
    • Next: Simple Estimation Functions

This Page

  • Show Source

Quick search

©2012, Christopher Ferrie and Christopher Granade. | Powered by Sphinx 1.4.6 & Alabaster 0.7.9 | Page source