Wolves’ diet based on DNA metabarcoding¶
Here is a tutorial on how to analyze DNA metabarcoding data produced on Illumina sequencers using:
- the OBITools
- some basic Unix commands
The data used in this tutorial correspond to the analysis of four wolf scats, using the protocol published in Shehzad et al. (2012) for assessing carnivore diet. After extracting DNA from the faeces, the DNA amplifications were carried out using the primers TTAGATACCCCACTATGC and TAGAACAGGCTCCTCTAG amplifiying the 12S-V5 region (Riaz et al. 2011), together with a wolf blocking oligonucleotide.
The complete data set can be downloaded here: the tutorial dataset
Good to remember: I am working with tons of sequences |
It is always a good idea to have a look at the intermediate results or to evaluate the best parameter for each step. Some commands are designed for that purpose, for example you can use :
|
Data¶
The data needed to run the tutorial are the following:
fastq files resulting of a GA IIx (Illumina) paired-end (2 x 108 bp) sequencing assay of DNA extracted and amplified from four wolf faeces:
wolf_F.fastq
wolf_R.fastq
the file describing the primers and tags used for all samples sequenced:
wolf_diet_ngsfilter.txt
The tags correspond to short and specific sequences added on the 5’ end of each primer to distinguish the different samples
the file containing the reference database in a fasta format:
db_v05_r117.fasta
This reference database has been extracted from the release 117 of EMBL using ecoPCR
the NCBI taxonomy formatted in the ecoPCR format (see the obiconvert utility for details) :
embl_r117.ndx
embl_r117.rdx
embl_r117.tdx
Step by step analysis¶
Recover full sequence reads from forward and reverse partial reads¶
When using the result of a paired-end sequencing assay with supposedly overlapping forward and reverse reads, the first step is to recover the assembled sequence.
The forward and reverse reads of the same fragment are at the same line position in the two fastq files obtained after sequencing. Based on these two files, the assembly of the forward and reverse reads is done with the illuminapairedend utility that aligns the two reads and returns the reconstructed sequence.
In our case, the command is:
> illuminapairedend --score-min=40 -r wolf_R.fastq wolf_F.fastq > wolf.fastq
The --score-min
option allows discarding sequences with low alignment quality.
If the alignment score is below 40, the forward and reverse reads are not aligned but
concatenated, and the value of the mode
attribute in the sequence header is set
to joined
instead of alignment
Remove unaligned sequence records¶
Unaligned sequences (mode=joined
) cannot be used. The following command allows
removing them from the dataset:
> obigrep -p 'mode!="joined"' wolf.fastq > wolf.ali.fastq
The -p
requires a python expression. mode!="joined"
means that if
the value of the mode
attribute is different from joined
, the
corresponding sequence record will be kept.
The first sequence record of wolf.ali.fastq
can be obtained using the following
command line:
> obihead --without-progress-bar -n 1 wolf.ali.fastq
And the result is:
@HELIUM_000100422_612GNAAXX:7:119:14871:19157#0/1_CONS ali_length=61;
direction=left; seq_ab_match=47; sminR=40.0; seq_a_mismatch=7; seq_b_deletion=1;
seq_b_mismatch=7; seq_a_deletion=1; score_norm=1.89772607661;
score=115.761290673; seq_a_insertion=0; mode=alignment; sminL=40.0;
seq_a_single=46; seq_b_single=46; seq_b_insertion=0;
ccgcctcctttagataccccactatgcttagccctaaacacaagtaattattataacaaaatcattcgccagagtgtagc
gggagtaggttaaaactcaaaggacttggcggtgctttatacccttctagaggagcctgttctaaggaggcgg
+
ddddddddddddddddddddddcddddcacdddddddddddddc\d~b~~~b~~~~~~b`ryK~|uxyXk`}~ccBccBc
ccBcBcccBcBccccccc~~~~b|~~xdbaddaaWcccdaaddddadacddddddcddadbbddddddddddd
Assign each sequence record to the corresponding sample/marker combination¶
Each sequence record is assigned to its corresponding sample and marker using the data
provided in a text file (here wolf_diet_ngsfilter.txt
). This text file contains one
line per sample, with the name of the experiment (several experiments can be included in
the same file), the name of the tags (for example: aattaac
if the same tag has been
used on each extremity of the PCR products, or aattaac:gaagtag
if the tags were
different), the sequence of the forward primer, the sequence of the reverse primer, the
letter T
or F
for sample identification using the forward primer and tag only or
using both primers and both tags, respectively (see ngsfilter
for details).
> ngsfilter -t wolf_diet_ngsfilter.txt -u unidentified.fastq wolf.ali.fastq > \
wolf.ali.assigned.fastq
This command creates two files:
unidentified.fastq
containing all the sequence records that were not assigned to a sample/marker combinationwolf.ali.assigned.fastq
containing all the sequence records that were properly assigned to a sample/marker combination
Note that each sequence record of the wolf.ali.assigned.fastq
file contains only the
barcode sequence as the sequences of primers and tags are removed by the
ngsfilter program. Information concerning the experiment,
sample, primers and tags is added as attributes in the sequence header.
For instance, the first sequence record of wolf.ali.assigned.fastq
is:
@HELIUM_000100422_612GNAAXX:7:119:14871:19157#0/1_CONS_SUB_SUB status=full;
seq_ab_match=47; sminR=40.0; ali_length=61; tail_quality=67.0;
reverse_match=tagaacaggctcctctag; seq_a_deletion=1; sample=29a_F260619;
forward_match=ttagataccccactatgc; forward_primer=ttagataccccactatgc;
reverse_primer=tagaacaggctcctctag; sminL=40.0; forward_score=72.0;
score=115.761290673; seq_a_mismatch=7; forward_tag=gcctcct; seq_b_mismatch=7;
experiment=wolf_diet; mid_quality=69.4210526316; avg_quality=69.1045751634;
seq_a_single=46; score_norm=1.89772607661; reverse_score=72.0;
direction=forward; seq_b_insertion=0; seq_b_deletion=1; seq_a_insertion=0;
seq_length_ori=153; reverse_tag=gcctcct; seq_length=99; mode=alignment;
head_quality=67.0; seq_b_single=46;
ttagccctaaacacaagtaattattataacaaaatcattcgccagagtgtagcgggagtaggttaaaactcaaaggact
tggcggtgctttataccctt
+
cacdddddddddddddc\d~b~~~b~~~~~~b`ryK~|uxyXk`}~ccBccBcccBcBcccBcBccccccc~~~~b|~~
xdbaddaaWcccdaadddda
Dereplicate reads into uniq sequences¶
The same DNA molecule can be sequenced several times. In order to reduce both file size and computations time, and to get easier interpretable results, it is convenient to work with unique sequences instead of reads. To dereplicate such reads into unique sequences, we use the obiuniq command.
Definition: Dereplicate reads into unique sequences |
Definition adapted from Seguritan and Rohwer (2001) |
For dereplication, we use the obiuniq command with the -m sample. The -m sample option is used to keep the information of the samples of origin for each unique sequence.
> obiuniq -m sample wolf.ali.assigned.fastq > wolf.ali.assigned.uniq.fasta
Note that obiuniq returns a fasta file.
The first sequence record of wolf.ali.assigned.uniq.fasta
is:
>HELIUM_000100422_612GNAAXX:7:119:14871:19157#0/1_CONS_SUB_SUB_CMP ali_length=61;
seq_ab_match=47; sminR=40.0; tail_quality=67.0; reverse_match=ttagataccccactatgc;
seq_a_deletion=1; forward_match=tagaacaggctcctctag; forward_primer=tagaacaggctcctctag;
reverse_primer=ttagataccccactatgc; sminL=40.0; merged_sample={'29a_F260619': 1};
forward_score=72.0; seq_a_mismatch=7; forward_tag=gcctcct; seq_b_mismatch=7;
score=115.761290673; mid_quality=69.4210526316; avg_quality=69.1045751634;
seq_a_single=46; score_norm=1.89772607661; reverse_score=72.0; direction=reverse;
seq_b_insertion=0; experiment=wolf_diet; seq_b_deletion=1; seq_a_insertion=0;
seq_length_ori=153; reverse_tag=gcctcct; count=1; seq_length=99; status=full;
mode=alignment; head_quality=67.0; seq_b_single=46;
aagggtataaagcaccgccaagtcctttgagttttaacctactcccgctacactctggcg
aatgattttgttataataattacttgtgtttagggctaa
The run of obiuniq has added two key=values entries in the header of the fasta sequence:
merged_sample={'29a_F260619': 1}
: this sequence have been found once in a single sample called 29a_F260619count=1
: the total count for this sequence is 1
To keep only these two key=value
attributes, we can use the
obiannotate command:
> obiannotate -k count -k merged_sample \
wolf.ali.assigned.uniq.fasta > $$ ; mv $$ wolf.ali.assigned.uniq.fasta
The first five sequence records of wolf.ali.assigned.uniq.fasta
become:
>HELIUM_000100422_612GNAAXX:7:119:14871:19157#0/1_CONS_SUB_SUB_CMP merged_sample={'29a_F260619': 1}; count=1;
aagggtataaagcaccgccaagtcctttgagttttaacctactcccgctacactctggcg
aatgattttgttataataattacttgtgtttagggctaa
>HELIUM_000100422_612GNAAXX:7:108:5640:3823#0/1_CONS_SUB_SUB_CMP merged_sample={'29a_F260619': 7, '15a_F730814': 2}; count=9;
aagggtataaagcaccgccaagtcctttgagttttaagctattgccggtagtactctggc
gaacaattttgttatattaattacttgtgtttagggctaa
>HELIUM_000100422_612GNAAXX:7:97:14311:19299#0/1_CONS_SUB_SUB_CMP merged_sample={'29a_F260619': 5, '15a_F730814': 4}; count=9;
aagggtataaagcaccgccaagtcctttgagttttaagctcttgccggtagtactctggc
gaataattttgttatattaattacttgtgtttagggctaa
>HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB merged_sample={'29a_F260619': 4697, '15a_F730814': 7638}; count=12335;
aagggtataaagcaccgccaagtcctttgagttttaagctattgccggtagtactctggc
gaataattttgttatattaattacttgtgtttagggctaa
>HELIUM_000100422_612GNAAXX:7:57:18459:16145#0/1_CONS_SUB_SUB_CMP merged_sample={'26a_F040644': 10490}; count=10490;
agggatgtaaagcaccgccaagtcctttgagtttcaggctgttgctagtagtactctggc
gaacattcttgtttattgaatgtttatgtttagggctaa
Denoise the sequence dataset¶
To have a set of sequences assigned to their corresponding samples does not mean that all sequences are biologically meaningful i.e. some of these sequences can contains PCR and/or sequencing errors, or chimeras. To remove such sequences as much as possible, we first discard rare sequences and then rsequence variants that likely correspond to artifacts.
Get the count statistics¶
In that case, we use obistat to get the counting statistics on
the ‘count’ attribute (the count attribute has been added by the obiuniq command). By piping the result in the Unix commands sort
and
head
, we keep only the count statistics for the 20 lowest values of the ‘count’
attribute.
> obistat -c count wolf.ali.assigned.uniq.fasta | \
sort -nk1 | head -20
This print the output:
count count total
1 3504 3504
2 228 456
3 136 408
4 73 292
5 61 305
6 47 282
7 34 238
8 27 216
9 26 234
10 25 250
11 13 143
12 14 168
13 10 130
14 5 70
15 9 135
16 8 128
17 4 68
18 9 162
19 5 95
The dataset contains 3504 sequences occurring only once.
Keep only the sequences having a count greater or equal to 10 and a length shorter than 80 bp¶
Based on the previous observation, we set the cut-off for keeping sequences for further
analysis to a count of 10. To do this, we use the obigrep
command.
The -p 'count>=10'
option means that the python
expression count>=10
must be evaluated to True
for each sequence to be kept. Based on previous
knowledge we also remove sequences with a length shorter than 80 bp (option -l) as we know
that the amplified 12S-V5 barcode for vertebrates must have a length around 100bp.
> obigrep -l 80 -p 'count>=10' wolf.ali.assigned.uniq.fasta \
> wolf.ali.assigned.uniq.c10.l80.fasta
The first sequence record of wolf.ali.assigned.uniq.c10.l80.fasta
is:
>HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB count=12335; merged_sample={'29a_F260619': 4697, '15a_F730814': 7638};
aagggtataaagcaccgccaagtcctttgagttttaagctattgccggtagtactctggc
gaataattttgttatattaattacttgtgtttagggctaa
Clean the sequences for PCR/sequencing errors (sequence variants)¶
As a final denoising step, using the obiclean program, we keep
the head sequences (-H
option) that are sequences with no variants with a count
greater than 5% of their own count (-r 0.05
option).
> obiclean -s merged_sample -r 0.05 -H \
wolf.ali.assigned.uniq.c10.l80.fasta > wolf.ali.assigned.uniq.c10.l80.clean.fasta
The first sequence record of wolf.ali.assigned.uniq.c10.l80.clean.fasta
is:
>HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB
merged_sample={'29a_F260619': 4697, '15a_F730814': 7638};
obiclean_count={'29a_F260619': 5438, '15a_F730814': 8642}; obiclean_head=True;
obiclean_cluster={'29a_F260619':
'HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB', '15a_F730814':
'HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB'};
count=12335; obiclean_internalcount=0; obiclean_status={'29a_F260619': 'h', '15a_F730814': 'h'};
obiclean_samplecount=2; obiclean_headcount=2; obiclean_singletoncount=0;
aagggtataaagcaccgccaagtcctttgagttttaagctattgccggtagtactctggc
gaataattttgttatattaattacttgtgtttagggctaa
Taxonomic assignment of sequences¶
Once denoising has been done, the next step in diet analysis is to assign the barcodes to the corresponding species in order to get the complete list of species associated to each sample.
Taxonomic assignment of sequences requires a reference database compiling all possible species to be identified in the sample. Assignment is then done based on sequence comparison between sample sequences and reference sequences.
Build a reference database¶
One way to build the reference database is to use the ecoPCR program to simulate a PCR and to extract all sequences from the EMBL that may be amplified in silico by the two primers (TTAGATACCCCACTATGC and TAGAACAGGCTCCTCTAG) used for PCR amplification.
The full list of steps for building this reference database would then be:
- Download the whole set of EMBL sequences (available from: ftp://ftp.ebi.ac.uk/pub/databases/embl/release/)
- Download the NCBI taxonomy (available from: ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz)
- Format them into the ecoPCR format (see obiconvert for how you can produce ecoPCR compatible files)
- Use ecoPCR to simulate amplification and build a reference database based on putatively amplified barcodes together with their recorded taxonomic information
As step 1 and step 3 can be really time-consuming (about one day), we alredy provide the reference database produced by the following commands so that you can skip its construction. Note that as the EMBL database and taxonomic data can evolve daily, if you run the following commands you may end up with quite different results.
Any utility allowing file downloading from a ftp site can be used. In the following
commands, we use the commonly used wget
Unix command.
Download the sequences¶
> mkdir EMBL
> cd EMBL
> wget -nH --cut-dirs=4 -Arel_std_\*.dat.gz -m ftp://ftp.ebi.ac.uk/pub/databases/embl/release/
> cd ..
Download the taxonomy¶
> mkdir TAXO
> cd TAXO
> wget ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz
> tar -zxvf taxdump.tar.gz
> cd ..
Format the data¶
> obiconvert --embl -t ./TAXO --ecopcrDB-output=embl_last ./EMBL/*.dat
Use ecoPCR to simulate an in silico` PCR¶
> ecoPCR -d ./ECODB/embl_last -e 3 -l 50 -L 150 \
TTAGATACCCCACTATGC TAGAACAGGCTCCTCTAG > v05.ecopcr
Note that the primers must be in the same order both in wolf_diet_ngsfilter.txt
and in
the ecoPCR command.
Clean the database¶
- filter sequences so that they have a good taxonomic description at the species, genus, and family levels (obigrep command below).
- remove redundant sequences (obiuniq command below).
- ensure that the dereplicated sequences have a taxid at the family level (obigrep command below).
- ensure that sequences each have a unique identification (obiannotate command below)
> obigrep -d embl_last --require-rank=species \
--require-rank=genus --require-rank=family v05.ecopcr > v05_clean.fasta
> obiuniq -d embl_last \
v05_clean.fasta > v05_clean_uniq.fasta
> obigrep -d embl_last --require-rank=family \
v05_clean_uniq.fasta > v05_clean_uniq_clean.fasta
> obiannotate --uniq-id v05_clean_uniq_clean.fasta > db_v05.fasta
Warning
From now on, for the sake of clarity, the following commands will use the filenames of
the files provided with the tutorial. If you decided to run the last steps and use the
files you have produced, you’ll have to use db_v05.fasta
instead of
db_v05_r117.fasta
and embl_last
instead of embl_r117
Assign each sequence to a taxon¶
Once the reference database is built, taxonomic assignment can be carried out using the ecotag command.
> ecotag -d embl_r117 -R db_v05_r117.fasta wolf.ali.assigned.uniq.c10.l80.clean.fasta > \
wolf.ali.assigned.uniq.c10.l80.clean.tag.fasta
The ecotag adds several key=value attributes in the sequence record header, among them:
- best_match=ACCESSION where ACCESSION is the id of hte sequence in the reference database that best aligns to the query sequence;
- best_identity=FLOAT where FLOAT*100 is the percentage of identity between the best match sequence and the query sequence;
- taxid=TAXID where TAXID is the final assignation of the sequence by ecotag
- scientific_name=NAME where NAME is the scientific name of the assigned taxid.
The first sequence record of wolf.ali.assigned.uniq.c10.l80.clean.tag.fasta
is:
>HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB_CMP
species_name=Capreolus capreolus; family=9850; scientific_name=Capreolus
capreolus; rank=species; taxid=9858; best_identity={'db_v05_r117': 1.0};
scientific_name_by_db={'db_v05_r117': 'Capreolus capreolus'};
obiclean_samplecount=2; species=9858; merged_sample={'29a_F260619': 4697,
'15a_F730814': 7638}; obiclean_count={'29a_F260619': 5438, '15a_F730814': 8642};
obiclean_singletoncount=0; obiclean_cluster={'29a_F260619':
'HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB_CMP',
'15a_F730814':
'HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB_CMP'};
species_list={'db_v05_r117': ['Capreolus capreolus']}; obiclean_internalcount=0;
match_count={'db_v05_r117': 1}; obiclean_head=True; taxid_by_db={'db_v05_r117':
9858}; family_name=Cervidae; genus_name=Capreolus;
obiclean_status={'29a_F260619': 'h', '15a_F730814': 'h'}; obiclean_headcount=2;
count=12335; id_status={'db_v05_r117': True}; best_match={'db_v05_r117':
'AJ885202'}; order_name=None; rank_by_db={'db_v05_r117': 'species'}; genus=9857;
order=None;
ttagccctaaacacaagtaattaatataacaaaattattcgccagagtactaccggcaat
agcttaaaactcaaaggacttggcggtgctttataccctt
Generate the final result table¶
Some unuseful attributes can be removed at this stage.
> obiannotate --delete-tag=scientific_name_by_db --delete-tag=obiclean_samplecount \
--delete-tag=obiclean_count --delete-tag=obiclean_singletoncount \
--delete-tag=obiclean_cluster --delete-tag=obiclean_internalcount \
--delete-tag=obiclean_head --delete-tag=taxid_by_db --delete-tag=obiclean_headcount \
--delete-tag=id_status --delete-tag=rank_by_db --delete-tag=order_name \
--delete-tag=order wolf.ali.assigned.uniq.c10.l80.clean.tag.fasta > \
wolf.ali.assigned.uniq.c10.l80.clean.tag.ann.fasta
The first sequence record of wolf.ali.assigned.uniq.c10.l80.clean.tag.ann.fasta
is
then:
>HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB_CMP
match_count={'db_v05_r117': 1}; count=12335; species_name=Capreolus capreolus;
best_match={'db_v05_r117': 'AJ885202'}; family=9850; family_name=Cervidae;
scientific_name=Capreolus capreolus; taxid=9858; rank=species;
obiclean_status={'29a_F260619': 'h', '15a_F730814': 'h'};
best_identity={'db_v05_r117': 1.0}; merged_sample={'29a_F260619': 4697,
'15a_F730814': 7638}; genus_name=Capreolus; genus=9857; species=9858;
species_list={'db_v05_r117': ['Capreolus capreolus']};
ttagccctaaacacaagtaattaatataacaaaattattcgccagagtactaccggcaat
agcttaaaactcaaaggacttggcggtgctttataccctt
The sequences can be sorted by decreasing order of count.
> obisort -k count -r wolf.ali.assigned.uniq.c10.l80.clean.tag.ann.fasta > \
wolf.ali.assigned.uniq.c10.l80.clean.tag.ann.sort.fasta
The first sequence record of wolf.ali.assigned.uniq.c10.l80.clean.tag.ann.sort.fasta
is then:
>HELIUM_000100422_612GNAAXX:7:22:8540:14708#0/1_CONS_SUB_SUB_CMP count=12335;
match_count={'db_v05_r117': 1}; species_name=Capreolus capreolus;
best_match={'db_v05_r117': 'AJ885202'}; family=9850; family_name=Cervidae;
scientific_name=Capreolus capreolus; taxid=9858; rank=species;
obiclean_status={'29a_F260619': 'h', '15a_F730814': 'h'};
best_identity={'db_v05_r117': 1.0}; merged_sample={'29a_F260619': 4697,
'15a_F730814': 7638}; genus_name=Capreolus; genus=9857; species=9858;
species_list={'db_v05_r117': ['Capreolus capreolus']};
ttagccctaaacacaagtaattaatataacaaaattattcgccagagtactaccggcaat
agcttaaaactcaaaggacttggcggtgctttataccctt
Finally, a tab-delimited file that can be open by excel or R is generated.
> obitab -o wolf.ali.assigned.uniq.c10.l80.clean.tag.ann.sort.fasta > \
wolf.ali.assigned.uniq.c10.l80.clean.tag.ann.sort.tab
- This file contains 26 sequences. You can deduce the diet of each sample:
- 13a_F730603: Cervus elaphus
- 15a_F730814: Capreolus capreolus
- 26a_F040644: Marmota sp. (according to the location, it is Marmota marmota)
- 29a_F260619: Capreolus capreolus
Note that we also obtained a few wolf sequences although a wolf-blocking oligonucleotide was used.
References¶
- Shehzad W, Riaz T, Nawaz MA, Miquel C, Poillot C, Shah SA, Pompanon F, Coissac E, Taberlet P (2012) Carnivore diet analysis based on next generation sequencing: application to the leopard cat (Prionailurus bengalensis) in Pakistan. Molecular Ecology, 21, 1951-1965.
- Riaz T, Shehzad W, Viari A, Pompanon F, Taberlet P, Coissac E (2011) ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Research, 39, e145.
- Seguritan V, Rohwer F. (2001) FastGroup: a program to dereplicate libraries of 16S rDNA sequences. BMC Bioinformatics. 2001;2:9. Epub 2001 Oct 16.