import os
os.environ['QT_API'] = 'pyqt'
import sip
sip.setapi("QString", 2)
sip.setapi("QVariant", 2)
from commands_proto import *
import packet_handler
import I2C_class,SPI_class,NRF24L01_class,MCP4728_class,NRF_NODE
from achan import *
from digital_channel import *
import serial,string,fcntl
import time
import sys
import numpy as np
import math
[docs]class Interface(object):
"""
**Communications library.**
This class contains methods that can be used to interact with the vLabtool
Initialization does the following
* connects to tty device
* loads calibration values.
+----------+-----------------------------------------------------------------+
|Arguments |Description |
+==========+=================================================================+
|timeout | serial port read timeout. default = 1s |
+----------+-----------------------------------------------------------------+
>>> from vLabtool import interface
>>> I = interface.Interface(2.0)
>>> print I
<interface.Interface instance at 0xb6c0cac>
Once you have instantiated this class, its various methods will allow access to all the features built
into the device.
"""
__metaclass__ = Singleton
def __init__(self,timeout=1.0,**kwargs):
self.ADC_SHIFTS_LOCATION1=11
self.ADC_SHIFTS_LOCATION2=12
self.ADC_POLYNOMIALS_LOCATION=13
self.DAC_POLYNOMIALS_LOCATION=1
self.DAC_SHIFTS_PVS1A=14
self.DAC_SHIFTS_PVS1B=15
self.DAC_SHIFTS_PVS2A=16
self.DAC_SHIFTS_PVS2B=17
self.DAC_SHIFTS_PVS3A=18
self.DAC_SHIFTS_PVS3B=19
self.BAUD = 1000000
self.timebase = 40
self.MAX_SAMPLES = 10000
self.samples=self.MAX_SAMPLES
self.triggerLevel=550
self.triggerChannel = 0
self.error_count=0
self.channels_in_buffer=0
self.digital_channels_in_buffer=0
self.data_splitting = kwargs.get('data_splitting',2500)
#--------------------------Initialize communication handler, and subclasses-----------------
self.H = packet_handler.Handler(**kwargs)
self.analogInputSources={}
self.allAnalogChannels=allAnalogChannels
for a in allAnalogChannels:self.analogInputSources[a]=analogInputSource(a)
#-------Check for calibration data. And process them if found---------------
if kwargs.get('load_calibration',True):
polynomials = self.read_bulk_flash(self.ADC_POLYNOMIALS_LOCATION,2048)
polyDict={}
if polynomials[:3]=='ADC':
print 'ADC calibration found...'
import struct
adc_shifts = self.read_bulk_flash(self.ADC_SHIFTS_LOCATION1,2048)+self.read_bulk_flash(self.ADC_SHIFTS_LOCATION2,2048)
adc_shifts = [ord(a) for a in adc_shifts]
print 'ADC INL correction table loaded.'
polynomials=polynomials.split('!!!!')[0]
for a in polynomials.split('>|')[1:]:
S= a.split('|<')
print '>>>>>>',S[0]
cals=S[1]
polyDict[S[0]]=[]
for b in range(len(cals)/16):
poly=struct.unpack('4f',cals[b*16:(b+1)*16])
print b,poly
polyDict[S[0]].append(poly)
for a in self.analogInputSources:
self.analogInputSources[a].loadCalibrationTable(adc_shifts)
if a in polyDict:
self.analogInputSources[a].loadPolynomials(polyDict[a])
self.analogInputSources[a].calibrationReady=True
self.analogInputSources[a].regenerateCalibration()
if a in unipolars:
for b in unipolars:
if b!=a:
self.analogInputSources[b].loadPolynomials(polyDict[a])
self.analogInputSources[b].calibrationReady=True
self.analogInputSources[b].regenerateCalibration()
print polynomials.split('>|')[0]
self.digital_channel_names=['ID1','ID2','ID3','ID4','COMP','CH1']
self.dchans=[digital_channel(a) for a in range(4)]
#This array of four instances of digital_channel is used to store data retrieved from the
#logic analyzer section of the device. It also contains methods to generate plottable data
#from the original timestamp arrays.
self.streaming=False
self.achans=[analogAcquisitionChannel(a) for a in ['CH1','CH2']]
self.multiplexedChannels = multiplexedChannels
self.bipolar_channels = ['CH1','CH3']
self.analog_gains={'CH2':0,'SENSOR':0}
self.analog_channel_names=['CH1','CH2','CH3','CH4','CH5','CH6','CH7','I2V','5V','9V','IN1','SEN']
self.gain_values=[1,2,4,5,8,10,16,32]
self.sensor_multiplex_channel=-1
self.sensor_multiplex_gain=0
self.buff=np.zeros(10000)
self.I2C = I2C_class.I2C(self.H)
"""
Sub-Instance I2C of the Interface library contains methods to access devices
connected to the I2C port.
example::
>>> I.I2C.start(self.ADDRESS,0) #writing mode
>>> I.I2C.send(0x01)
>>> I.I2C.stop()
.. seealso:: :py:meth:`~I2C_class.I2C` for complete documentation
"""
#self.I2C.pullSCLLow(5000)
self.SPI = SPI_class.SPI(self.H)
"""
Sub-Instance SPI of the Interface library contains methods to access devices
connected to the SPI port.
example::
>>> I=Interface()
>>> I.SPI.start('CS1')
>>> I.SPI.send16(0xAAFF)
>>> print I.SPI.send16(0xFFFF)
some number
.. seealso:: :py:meth:`~SPI_class.SPI` for complete documentation
"""
self.DAC = MCP4728_class.MCP4728(self.H,3.3,0)
self.SENSORMID=0
self.SPI.set_parameters(1,7,1,0)
self.NRF = NRF24L01_class.NRF24L01(self.H)
"""
Sub-Instance NRF of the Interface library contains methods to access wireless sensor nodes
via an NRF24L01+ module connnected to the SPI port
try out the wireless modules app by running *vLabtool-experiments* from the command line.
.. _nrf_example:
example::
>>> I=interface.Interface()
>>> I.NRF.start_token_manager() #Start listening to any nodes that may turn on
>>> while 1: #Wait for at least one node to register itself
>>> lst = I.NRF.get_nodelist()
>>> print lst
>>> time.sleep(0.5)
>>> if(len(lst)>0):break
>>> I.NRF.stop_token_manager() # Registrations closed!
>>> LINK = I.newRadioLink(address=lst.keys()[0]) #lst = dictionary with node addresses as keys, and I2C sensors as values
>>> print LINK.I2C_scan() #vLabtool automatically transmits stuff to LINK's address, and retrieves sensor info.
.. raw:: html
<iframe width="560" height="315" src="https://www.youtube.com/embed/7VAGckFzVlc" frameborder="0" allowfullscreen></iframe>
.. seealso:: :py:meth:`~NRF24L01_class.NRF24L01` for complete documentation
"""
self.DDS_MAX_FREQ = 0xFFFFFFFL-1 #28 bit resolution
self.DDS_CLOCK = 8e6 # MHz clock
self.map_reference_clock(4,'wavegen')
#print self.DDS_CLOCK
self.__selectSensorChannel__(0)
for a in ['CH1','CH2']: self.set_gain(a,0)
self.SOCKET_CAPACITANCE = 42e-12
time.sleep(0.001)
def __del__(self):
print 'closing port'
try:
self.fd.close()
except:
pass
[docs] def get_version(self):
"""
Returns the version string of the device
format: LTS-...... <newline>
"""
return self.H.get_version(self.H.fd)
[docs] def newRadioLink(self,**args):
'''
============== ============================================================================================
**Arguments**
============== ============================================================================================
\*\*Kwargs
address address of the node. a 24 bit number. Printed on the nodes. Can also be retrieved using
:py:meth:`~NRF24L01_class.NRF24L01.get_nodelist`
============== ============================================================================================
:return: :py:meth:`~NRF_NODE.RadioLink`
.. seealso:: nrf_example_
'''
return NRF_NODE.RadioLink(self.NRF,**args)
#-------------------------------------------------------------------------------------------------------------------#
#|================================================ANALOG SECTION====================================================|
#|This section has commands related to analog measurement and control. These include the oscilloscope routines, |
#|voltmeters, ammeters, and Programmable voltage sources. |
#-------------------------------------------------------------------------------------------------------------------#
[docs] def reconnect(self):
'''
Attempts to reconnect to the device in case of a commmunication error or accidental disconnect.
'''
self.H.reconnect()
[docs] def capture1(self,ch,ns,tg):
"""
Blocking call that fetches an oscilloscope trace from the specified input channel
============== ============================================================================================
**Arguments**
============== ============================================================================================
ch Channel to select as input. ['CH1'..'CH9','5V','PCS','9V','IN1','SEN']
ns Number of samples to fetch. Maximum 10000
tg Timegap between samples in microseconds
============== ============================================================================================
.. figure:: ../images/capture1.png
:width: 400px
:align: center
:alt: alternate text
:figclass: align-center
A sine wave captured and plotted.
Example
>>> from pylab import *
>>> from Labtools import interface
>>> I=interface.Interface()
>>> x,y = I.capture1('CH1',3200,1)
>>> plot(x,y)
>>> show()
:return: Arrays X(timestamps),Y(Corresponding Voltage values)
"""
self.capture_traces(1,ns,tg,ch)
time.sleep(1e-6*self.samples*self.timebase+.01)
while not self.oscilloscope_progress()[0]:
pass
return self.fetch_trace(1)
[docs] def capture2(self,ns,tg):
"""
Blocking call that fetches oscilloscope traces from CH1,CH2
============== ============================================================================================
**Arguments**
============== ============================================================================================
ns Number of samples to fetch. Maximum 5000
tg Timegap between samples in microseconds
============== ============================================================================================
.. figure:: ../images/capture2.png
:width: 400px
:align: center
:alt: alternate text
:figclass: align-center
Two sine waves captured and plotted.
Example
>>> from pylab import *
>>> from Labtools import interface
>>> I=interface.Interface()
>>> x,y1,y2 = I.capture2(1600,1.25)
>>> plot(x,y1)
>>> plot(x,y2)
>>> show()
:return: Arrays X(timestamps),Y1(Voltage at CH1),Y2(Voltage at CH2)
"""
self.capture_traces(2,ns,tg)
time.sleep(1e-6*self.samples*self.timebase+.01)
while not self.oscilloscope_progress()[0]:
pass
x,y=self.fetch_trace(1)
x,y2=self.fetch_trace(2)
return x,y,y2
[docs] def capture4(self,ns,tg):
"""
Blocking call that fetches oscilloscope traces from CH1,CH2,CH3,CH4
============== ============================================================================================
**Arguments**
============== ============================================================================================
ns Number of samples to fetch. Maximum 2500
tg Timegap between samples in microseconds. Minimum 1.75uS
============== ============================================================================================
.. figure:: ../images/capture4.png
:width: 400px
:align: center
:alt: alternate text
:figclass: align-center
Four traces captured and plotted.
Example
>>> from pylab import *
>>> I=interface.Interface()
>>> x,y1,y2,y3,y4 = I.capture4(800,1.75)
>>> plot(x,y1)
>>> plot(x,y2)
>>> plot(x,y3)
>>> plot(x,y4)
>>> show()
:return: Arrays X(timestamps),Y1(Voltage at CH1),Y2(Voltage at CH2),Y3(Voltage at CH3),Y4(Voltage at CH4)
"""
self.capture_traces(4,ns,tg)
time.sleep(1e-6*self.samples*self.timebase+.01)
while not self.oscilloscope_progress()[0]:
pass
x,y=self.fetch_trace(1)
x,y2=self.fetch_trace(2)
x,y3=self.fetch_trace(3)
x,y4=self.fetch_trace(4)
return x,y,y2,y3,y4
[docs] def capture_traces(self,num,samples,tg,channel_one_input='CH1',CH123SA=0,**kwargs):
"""
Instruct the ADC to start sampling. use fetch_trace to retrieve the data
=================== ============================================================================================
**Arguments**
=================== ============================================================================================
num Channels to acquire. 1/2/4
samples Total points to store per channel. Maximum 3200 total.
tg Timegap between two successive samples (in uSec)
channel_one_input map channel 1 to 'CH1' ... 'CH9'
\*\*kwargs
* trigger Whether or not to trigger the oscilloscope based on the voltage level set by :func:`configure_trigger`
=================== ============================================================================================
.. raw:: html
<div align="center">
<iframe width="560" height="315" src="https://www.youtube.com/embed/M40dCvR1v7Y" frameborder="0" allowfullscreen></iframe>
</div>
.. _adc_example:
.. figure:: ../images/transient.png
:width: 600px
:align: center
:alt: alternate text
:figclass: align-center
Transient response of an Inductor and Capacitor in series
The following example demonstrates how to use this function to record active events.
* Connect a capacitor and an Inductor in series.
* Connect CH1 to the spare leg of the inductor. Also Connect OD1 to this point
* Connect CH2 to the junction between the capacitor and the inductor
* connect the spare leg of the capacitor to GND( ground )
* set OD1 initially high using set_state(OD1=1)
>>> I.set_state(OD1=1) #Turn on OD1
>>> time.sleep(0.5) #Arbitrary delay to wait for stabilization
>>> I.capture_traces(2,800,2,trigger=False) #Start acquiring data (2 channels,800 samples, 2microsecond intervals)
>>> I.set_state(OD1=0) #Turn off OD1. This must occur immediately after the previous line was executed.
>>> time.sleep(800*2*1e-6) #Minimum interval to wait for completion of data acquisition. samples*timegap*(convert to Seconds)
>>> x,CH1=I.fetch_trace(1)
>>> x,CH2=I.fetch_trace(2)
>>> plot(x,CH1-CH2) #Voltage across the inductor
>>> plot(x,CH2) ##Voltage across the capacitor
>>> show()
The following events take place when the above snippet runs
#. The oscilloscope starts storing voltages present at CH1 and CH2 every 2 microseconds
#. The output OD1 was enabled, and this causes the voltage between the L and C to approach OD1 voltage.
(It may or may not oscillate)
#. The data from CH1 and CH2 was read into x,CH1,CH2
#. Both traces were plotted in order to visualize the Transient response of series LC
:return: nothing
.. seealso::
:func:`fetch_trace` , :func:`oscilloscope_progress` , :func:`capture1` , :func:`capture2` , :func:`capture4`
"""
triggerornot=0x80 if kwargs.get('trigger',True) else 0
self.timebase=tg
CHOSA = self.analogInputSources[channel_one_input].CHOSA
self.H.__sendByte__(ADC)
if(num==1):
if(self.timebase<1.5):self.timebase=1.5
if(samples>self.MAX_SAMPLES):samples=self.MAX_SAMPLES
self.achans[0].set_params(channel=channel_one_input,length=samples,timebase=self.timebase,resolution=TEN_BIT,source=self.analogInputSources[channel_one_input])
self.H.__sendByte__(CAPTURE_ONE) #read 1 channel
self.H.__sendByte__(CHOSA|triggerornot) #channelk number
elif(num==2):
if(self.timebase<1.75):self.timebase=1.75
if(samples>self.MAX_SAMPLES/2):samples=self.MAX_SAMPLES/2
self.achans[0].set_params(channel=channel_one_input,length=samples,timebase=self.timebase,resolution=TEN_BIT,source=self.analogInputSources[channel_one_input])
self.achans[1].set_params(channel='CH2',length=samples,timebase=self.timebase,resolution=TEN_BIT,source=self.analogInputSources['CH2'])
self.H.__sendByte__(CAPTURE_TWO) #ccapture 2 channels
self.H.__sendByte__(CHOSA|triggerornot) #channel 0 number
self.samples=samples
self.H.__sendInt__(samples) #number of samples per channel to record
self.H.__sendInt__(int(self.timebase*8)) #Timegap between samples. 8MHz timer clock
self.H.__get_ack__()
self.channels_in_buffer=num
[docs] def capture_highres_traces(self,channel,samples,tg,**kwargs):
"""
Instruct the ADC to start sampling. use fetch_trace to retrieve the data
=================== ============================================================================================
**Arguments**
=================== ============================================================================================
channel channel to acquire data from 'CH1' ... 'CH9'
samples Total points to store per channel. Maximum 3200 total.
tg Timegap between two successive samples (in uSec)
\*\*kwargs
* trigger Whether or not to trigger the oscilloscope based on the voltage level set by :func:`configure_trigger`
=================== ============================================================================================
:return: nothing
.. seealso::
:func:`fetch_trace` , :func:`oscilloscope_progress` , :func:`capture1` , :func:`capture2` , :func:`capture4`
"""
triggerornot=0x80 if kwargs.get('trigger',True) else 0
self.timebase=tg
self.H.__sendByte__(ADC)
CHOSA = self.analogInputSources[channel].CHOSA
if(self.timebase<2.8):self.timebase=2.8
if(samples>self.MAX_SAMPLES):samples=self.MAX_SAMPLES
self.achans[0].set_params(channel=channel,length=samples,timebase=self.timebase,resolution=TWELVE_BIT,source=self.analogInputSources[channel])
self.H.__sendByte__(CAPTURE_12BIT) #read 1 channel
self.H.__sendByte__(CHOSA|triggerornot) #channelk number
self.samples=samples
self.H.__sendInt__(samples) #number of samples to read
self.H.__sendInt__(int(self.timebase*8)) #Timegap between samples. 8MHz timer clock
self.H.__get_ack__()
self.channels_in_buffer=1
[docs] def fetch_trace(self,channel_number):
"""
fetches a channel(1-4) captured by :func:`capture_traces` called prior to this, and returns xaxis,yaxis
============== ============================================================================================
**Arguments**
============== ============================================================================================
channel_number Any of the maximum of four channels that the oscilloscope captured. 1/2/3/4
============== ============================================================================================
:return: time array,voltage array
.. seealso::
:func:`capture_traces` , :func:`oscilloscope_progress`
"""
self.__fetch_channel__(channel_number)
return self.achans[channel_number-1].get_xaxis(),self.achans[channel_number-1].get_yaxis()
[docs] def oscilloscope_progress(self):
"""
returns the number of samples acquired by the capture routines, and the conversion_done status
:return: conversion done(bool) ,samples acquired (number)
>>> I.start_capture(1,3200,2)
>>> print I.oscilloscope_progress()
(0,46)
>>> time.sleep(3200*2e-6)
>>> print I.oscilloscope_progress()
(1,3200)
.. seealso::
:func:`fetch_trace` , :func:`capture_traces`
"""
conversion_done=0
samples=0
try:
self.H.__sendByte__(ADC)
self.H.__sendByte__(GET_CAPTURE_STATUS)
conversion_done = self.H.__getByte__()
samples = self.H.__getInt__()
self.H.__get_ack__()
except:
print 'disconnected!!'
#sys.exit(1)
return conversion_done,samples
def __fetch_channel__(self,channel_number):
"""
Fetches a section of data from any channel and stores it in the relevant instance of achan()
============== ============================================================================================
**Arguments**
============== ============================================================================================
channel_number channel number (1,2,3,4)
============== ============================================================================================
:return: True if successful
"""
samples = self.achans[channel_number-1].length
if(channel_number>self.channels_in_buffer):
print 'Channel unavailable'
return False
data=''
for i in range(int(samples/self.data_splitting)):
self.H.__sendByte__(ADC)
self.H.__sendByte__(GET_CAPTURE_CHANNEL)
self.H.__sendByte__(channel_number-1) #starts with A0 on PIC
self.H.__sendInt__(self.data_splitting)
self.H.__sendInt__(i*self.data_splitting)
data+= self.H.fd.read(self.data_splitting*2) #reading int by int sometimes causes a communication error. this works better.
self.H.__get_ack__()
if samples%self.data_splitting:
self.H.__sendByte__(ADC)
self.H.__sendByte__(GET_CAPTURE_CHANNEL)
self.H.__sendByte__(channel_number-1) #starts with A0 on PIC
self.H.__sendInt__(samples%self.data_splitting)
self.H.__sendInt__(samples-samples%self.data_splitting)
data += self.H.fd.read(2*(samples%self.data_splitting)) #reading int by int sometimes causes a communication error. this works better.
self.H.__get_ack__()
for a in range(samples): self.buff[a] = ord(data[a*2])|(ord(data[a*2+1])<<8)
self.achans[channel_number-1].yaxis = self.achans[channel_number-1].fix_value(self.buff[:samples])
return True
def __fetch_channel_oneshot__(self,channel_number):
"""
Fetches all data from given channel and stores it in the relevant instance of achan()
============== ============================================================================================
**Arguments**
============== ============================================================================================
channel_number channel number (1,2,3,4)
============== ============================================================================================
"""
offset=0
samples = self.achans[channel_number-1].length
if(channel_number>self.channels_in_buffer):
print 'Channel unavailable'
return False
self.H.__sendByte__(ADC)
self.H.__sendByte__(GET_CAPTURE_CHANNEL)
self.H.__sendByte__(channel_number-1) #starts with A0 on PIC
self.H.__sendInt__(samples)
self.H.__sendInt__(offset)
data = self.H.fd.read(samples*2) #reading int by int sometimes causes a communication error. this works better.
self.H.__get_ack__()
for a in range(samples): self.buff[a] = ord(data[a*2])|(ord(data[a*2+1])<<8)
self.achans[channel_number-1].yaxis = self.achans[channel_number-1].fix_value(self.buff[:samples])
return True
[docs] def set_gain(self,channel,gain):
"""
set the gain of the selected PGA
============== ============================================================================================
**Arguments**
============== ============================================================================================
channel 'CH1','CH2','CH3','CH4','CH5','CH6','CH7','CH8','CH9','5V','PCS','9V'
gain (0-7) -> (1x,2x,4x,5x,8x,10x,16x,32x)
============== ============================================================================================
.. note::
The gain value applied to a channel will result in better resolution for small amplitude signals.
However, values read using functions like :func:`get_average_voltage` or :func:`capture_traces`
will not be 2x, or 4x times the input signal. These are calibrated to return accurate values of the original input signal.
>>> I.set_gain('CH1',7) #gain set to 32x on CH1
"""
if self.analogInputSources[channel].gainPGA==None:
print 'No amplifier exists on this channel :',channel
return
self.analogInputSources[channel].setGain(self.gain_values[gain])
if channel in self.multiplexedChannels:
for a in self.multiplexedChannels: self.analogInputSources[a].setGain(self.gain_values[gain])
self.H.__sendByte__(ADC)
self.H.__sendByte__(SET_PGA_GAIN)
self.H.__sendByte__(self.analogInputSources[channel].gainPGA) #send the channel
self.H.__sendByte__(gain) #send the gain
self.H.__get_ack__()
return self.gain_values[gain]
def __selectSensorChannel__(self,channel):
"""
set the channel of PGA 5
============== ============================================================================================
**Arguments**
============== ============================================================================================
channel channel number. 0-7
============== ============================================================================================
"""
self.H.__sendByte__(ADC)
self.H.__sendByte__(SELECT_PGA_CHANNEL)
self.H.__sendByte__(channel) #send the channel
self.H.__get_ack__()
def __calcCHOSA__(self,name):
name=name.upper()
source = self.analogInputSources[name]
if name in self.allAnalogChannels:
if source.offsetEnabled:
if source.offsetCode!=self.SENSORMID:
self.DAC.__setRawVoltage__(1,source.offsetCode)
self.SENSORMID = source.offsetCode
#print 'reset details',self.sensor_multiplex_channel,self.SENSORMID
if self.sensor_multiplex_channel != source.multiplexSelection:
self.sensor_multiplex_channel = source.multiplexSelection
self.__selectSensorChannel__(source.multiplexSelection)
#print 'reset details',self.sensor_multiplex_channel,self.SENSORMID
else:
print 'not a valid channel name. selecting CH1'
return self.__calcCHOSA__('CH1')
return source.CHOSA
[docs] def setOffset(self,channel,offset):
chan=self.analogInputSources[channel]
chan.setOffset(offset)
self.DAC.__setRawVoltage__(1,chan.offsetCode)
[docs] def get_average_voltage(self,channel_name,sleep=0):
"""
Return the voltage on the selected channel
+------------+-----------------------------------------------------------------------------------------+
|Arguments |Description |
+============+=========================================================================================+
|channel_name| 'CH1','CH2','CH3','CH4','CH5','CH6','CH7','CH8','CH9','5V','PCS','9V','IN1','SEN','TEMP'|
+------------+-----------------------------------------------------------------------------------------+
|sleep | read voltage in CPU sleep mode. not particularly useful. Also, Buggy. |
+------------+-----------------------------------------------------------------------------------------+
.. raw:: html
<iframe width="560" height="315" src="https://www.youtube.com/embed/oPVh_IaMU_g" frameborder="0" allowfullscreen></iframe>
Example:
>>> print I.get_average_voltage('CH4')
1.002
"""
chosa = self.__calcCHOSA__(channel_name)
self.H.__sendByte__(ADC)
self.H.__sendByte__(GET_VOLTAGE_SUMMED)
if(sleep):self.H.__sendByte__(chosa|0x80)#sleep mode conversion. buggy
else:self.H.__sendByte__(chosa)
self.H.__getInt__() #2 leading Zeroes sent by UART. sleep or no sleep :p
V_sum = self.H.__getInt__()
#V = [self.H.__getInt__() for a in range(16)]
#print V
self.H.__get_ack__()
return self.analogInputSources[channel_name].calPoly12(V_sum/16.)
def __get_raw_average_voltage__(self,channel_name,sleep=0):
"""
Return the average of 16 raw 10-bit ADC values of the voltage on the selected channel
============== ============================================================================================
**Arguments**
============== ============================================================================================
channel_name 'CH1','CH2','CH3','CH4','CH5','CH6','CH7','CH8','CH9','5V','PCS','9V','IN1','SEN','TEMP'
sleep read voltage in CPU sleep mode. not particularly useful.
============== ============================================================================================
"""
chosa = self.__calcCHOSA__(channel_name)
self.H.__sendByte__(ADC)
self.H.__sendByte__(GET_VOLTAGE_SUMMED)
if(sleep):self.H.__sendByte__(chosa|0x80)#sleep mode conversion. buggy
else:self.H.__sendByte__(chosa)
self.H.__getInt__() #2 Zeroes sent by UART. sleep or no sleep :p
V_sum = self.H.__getInt__()
self.H.__get_ack__()
return V_sum/16. #sum(V)/16.0 #
#-------------------------------------------------------------------------------------------------------------------#
#|===============================================DIGITAL SECTION====================================================|
#|This section has commands related to digital measurement and control. These include the Logic Analyzer, frequency |
#|measurement calls, timing routines, digital outputs etc |
#-------------------------------------------------------------------------------------------------------------------#
def __calcDChan__(self,name):
"""
accepts a string represention of a digital input ( 'ID1','ID2','ID3','ID4','LMETER','CH4' ) and returns a corresponding number
"""
if name in self.digital_channel_names:
return self.digital_channel_names.index(name)
else:
print ' invalid channel',name,' , selecting ID1 instead '
return 0
[docs] def get_high_freq(self,pin):
"""
retrieves the frequency of the signal connected to ID1. >10MHz
also good for lower frequencies, but avoid using it since
the ADC cannot be used simultaneously. It shares a TIMER with the ADC.
The input frequency is fed to a 32 bit counter for a period of 100mS.
The value of the counter at the end of 100mS is used to calculate the frequency.
.. raw:: html
<iframe width="560" height="315" src="https://www.youtube.com/embed/9RLBPgxYGvM" frameborder="0" allowfullscreen></iframe>
.. seealso:: :func:`get_freq`
============== ============================================================================================
**Arguments**
============== ============================================================================================
pin The input pin to measure frequency from. 'ID1' , 'ID2', 'ID3', 'ID4', 'LMETER','CH4'
============== ============================================================================================
:return: frequency
"""
self.H.__sendByte__(COMMON)
self.H.__sendByte__(GET_HIGH_FREQUENCY)
self.H.__sendByte__(self.__calcDChan__(pin))
scale=self.H.__getByte__()
val = self.H.__getLong__()
self.H.__get_ack__()
return scale*(val)/1.0e-1 #100mS sampling
[docs] def get_freq(self,channel='ID1',timeout=0.1):
"""
Frequency measurement on IDx.
Measures time taken for 16 rising edges of input signal.
returns the frequency in Hertz
============== ============================================================================================
**Arguments**
============== ============================================================================================
channel The input to measure frequency from. 'ID1' , 'ID2', 'ID3', 'ID4', 'LMETER','CH4'
timeout This is a blocking call which will wait for one full wavelength before returning the
calculated frequency.
Use the timeout option if you're unsure of the input signal.
returns 0 if timed out
============== ============================================================================================
:return float: frequency
.. _timing_example:
* connect SQR1 to ID1
>>> I.set_sqr1(2000,500,1) # TODO: edit this function
>>> print I.get_freq('ID1')
4000.0
>>> print I.r2r_time('ID1') #time between successive rising edges
0.00025
>>> print I.f2f_time('ID1') #time between successive falling edges
0.00025
>>> print I.pulse_time('ID1') #may detect a low pulse, or a high pulse. Whichever comes first
6.25e-05
>>> I.duty_cycle('ID1') #returns wavelength, high time
(0.00025,6.25e-05)
"""
self.H.__sendByte__(COMMON)
self.H.__sendByte__(GET_FREQUENCY)
timeout_msb = int((timeout*64e6))>>16
self.H.__sendInt__(timeout_msb)
self.H.__sendByte__(self.__calcDChan__(channel))
tmt = self.H.__getInt__()
x=[self.H.__getLong__() for a in range(2)]
self.H.__get_ack__()
if(tmt >= timeout_msb):return 0
freq = lambda t: 16*64e6/t if(t) else 0
y=x[1]-x[0]
return freq(y)
[docs] def r2r_time(self,channel='ID1',timeout=0.1):
"""
Returns the time interval between two rising edges
of input signal on ID1
============== ============================================================================================
**Arguments**
============== ============================================================================================
channel The input to measure time between two rising edges.'ID1' , 'ID2', 'ID3', 'ID4', 'LMETER','CH4'
timeout Use the timeout option if you're unsure of the input signal time period.
returns 0 if timed out
============== ============================================================================================
:return float: time between two rising edges of input signal
.. seealso:: timing_example_
"""
self.H.__sendByte__(TIMING)
self.H.__sendByte__(GET_TIMING)
timeout_msb = int((timeout*64e6))>>16
self.H.__sendInt__(timeout_msb)
self.H.__sendByte__( EVERY_RISING_EDGE<<2 | 2)
self.H.__sendByte__(self.__calcDChan__(channel))
tmt = self.H.__getInt__()
x=[self.H.__getLong__() for a in range(2)]
self.H.__get_ack__()
if(tmt >= timeout_msb):return -1
rtime = lambda t: t/64e6
y=x[1]-x[0]
return rtime(y)
[docs] def f2f_time(self,channel='ID1',timeout=0.1):
"""
Returns the time interval between two falling edges
of input signal on ID1
============== ============================================================================================
**Arguments**
============== ============================================================================================
channel The input to measure time between two falling edges. 'ID1' , 'ID2', 'ID3', 'ID4', 'LMETER','CH4'
timeout Use the timeout option if you're unsure of the input signal time period.
returns 0 if timed out
============== ============================================================================================
:return float: time between two falling edges of input signal
.. seealso:: timing_example_
"""
self.H.__sendByte__(TIMING)
self.H.__sendByte__(GET_TIMING)
timeout_msb = int((timeout*64e6))>>16
self.H.__sendInt__(timeout_msb)
self.H.__sendByte__( EVERY_FALLING_EDGE<<2 | 2)
self.H.__sendByte__(self.__calcDChan__(channel))
tmt = self.H.__getInt__()
x=[self.H.__getLong__() for a in range(2)]
self.H.__get_ack__()
if(tmt >= timeout_msb):return -1
rtime = lambda t: t/64e6
y=x[1]-x[0]
return rtime(y)
[docs] def DutyCycle(self,channel='ID1',timeout=0.1):
"""
duty cycle measurement on channel
returns wavelength(seconds), and length of first half of pulse(high time)
low time = (wavelength - high time)
============== ============================================================================================
**Arguments**
============== ============================================================================================
channel The input pin to measure wavelength and high time. 'ID1' , 'ID2', 'ID3', 'ID4', 'LMETER','CH4'
timeout Use the timeout option if you're unsure of the input signal time period.
returns 0 if timed out
============== ============================================================================================
:return : wavelength,duty cycle
.. seealso:: timing_example_
"""
self.H.__sendByte__(TIMING)
self.H.__sendByte__(GET_DUTY_CYCLE)
timeout_msb = int((timeout*64e6))>>16
self.H.__sendInt__(timeout_msb)
self.H.__sendByte__(self.__calcDChan__(channel)|(self.__calcDChan__(channel)<<4))
x=[self.H.__getLong__() for a in range(3)]
edge = self.H.__getByte__()
tmt = self.H.__getInt__()
self.H.__get_ack__()
if edge: #rising edge has occurred
y = [x[1]-x[0],x[2]-x[0]]
else: #falling edge
y = [x[2]-x[1],x[2]-x[0]]
print x,y,edge
if(tmt >= timeout_msb):return -1,-1
rtime = lambda t: t/64e6
params = rtime(y[1]),rtime(y[0])/rtime(y[1])
return params
[docs] def MeasureInterval(self,channel1,channel2,edge1,edge2,timeout=0.1):
"""
Measures time intervals between two logic level changes on any two digital inputs(both can be the same)
For example, one can measure the time interval between the occurence of a rising edge on ID1, and a falling edge on ID3.
If the returned time is negative, it simply means that the event corresponding to channel2 occurred first.
returns the calculated time
============== ============================================================================================
**Arguments**
============== ============================================================================================
channel1 The input pin to measure first logic level change
channel1 The input pin to measure second logic level change
* 'ID1' , 'ID2', 'ID3', 'ID4', 'LMETER','CH4'
edge1 The type of level change to detect in order to start the timer
* 'rising'
* 'falling'
* 'four rising edges'
edge2 The type of level change to detect in order to stop the timer
* 'rising'
* 'falling'
* 'four rising edges'
timeout Use the timeout option if you're unsure of the input signal time period.
returns -1 if timed out
============== ============================================================================================
:return : time
.. seealso:: timing_example_
"""
self.H.__sendByte__(TIMING)
self.H.__sendByte__(INTERVAL_MEASUREMENTS)
timeout_msb = int((timeout*64e6))>>16
self.H.__sendInt__(timeout_msb)
self.H.__sendByte__(self.__calcDChan__(channel1)|(self.__calcDChan__(channel2)<<4))
params =0
if edge1 == 'rising': params |= 3
elif edge1=='falling': params |= 2
else: params |= 4
if edge2 == 'rising': params |= 3<<3
elif edge2=='falling': params |= 2<<3
else: params |= 4<<3
self.H.__sendByte__(params)
A=self.H.__getLong__()
B=self.H.__getLong__()
tmt = self.H.__getInt__()
self.H.__get_ack__()
#print A,B
if(tmt >= timeout_msb or B==0):return -1
rtime = lambda t: t/64e6
return rtime(B-A+20)
[docs] def pulse_time(self,channel='CH1',timeout=0.1):
"""
pulse time measurement on ID1
returns pulse length(s) of high pulse or low pulse. whichever occurs first
============== ============================================================================================
**Arguments**
============== ============================================================================================
channel The input pin to measure pulse width from.
* 'ID1' , 'ID2', 'ID3', 'ID4', 'LMETER','CH4'
timeout Use the timeout option if you're unsure of the input signal time period.
returns 0 if timed out
============== ============================================================================================
:return float: pulse width in seconds
.. seealso:: timing_example_
"""
self.H.__sendByte__(TIMING)
self.H.__sendByte__(GET_PULSE_TIME)
timeout_msb = int((timeout*64e6))>>16
self.H.__sendInt__(timeout_msb)
self.H.__sendByte__(self.__calcDChan__(channel))
x=[self.H.__getLong__() for a in range(2)]
tmt = self.H.__getInt__()
self.H.__get_ack__()
if(tmt >= timeout_msb):return -1
rtime = lambda t: t/64e6
#print params[0]*1e6,params[1]*1e6
return rtime(x[1]-x[0])
[docs] def setup_comparator(self,level=7,digital_filter=3):
"""
setup the voltage level and filtering on the analog comparator linked to CH4.
It can then be used to directly estimate the frequency and other timing details of input analog waveforms on CH4
============== ============================================================================================
**Arguments**
============== ============================================================================================
level voltage level for + reference of comparator [0-15]
digital_filter Level changes faster than 3 * cpu freq / (1<<digital_filter) will be ignored
============== ============================================================================================
.. seealso:: timing_example_
"""
print (1./4)*(3.3) + (level/32.)*(3.3)
self.H.__sendByte__(TIMING)
self.H.__sendByte__(CONFIGURE_COMPARATOR)
self.H.__sendByte__(level | (digital_filter<<4) )
self.H.__get_ack__()
[docs] def LA_capture1(self,waiting_time=0.1,trigger=0):
"""
log timestamps of rising/falling edges on one digital input (ID1)
============== ======================================================================================================
**Arguments**
============== ======================================================================================================
waiting_time Total time to allow the logic analyzer to collect data.
This is implemented using a simple sleep routine, so if large delays will be involved,
refer to :func:`start_one_channel_LA` to start the acquisition, and :func:`fetch_LA_channels` to
retrieve data from the hardware after adequate time. The retrieved data is stored
in the array self.dchans[0].timestamps. Divide each timestamp by 64e6 to convert to seconds.
trigger Edge trigger on ID1.
options = 0 , 'rising' , 'falling'
============== ======================================================================================================
:return: Bool initial_state Low/High, timestamp array in Seconds
::
>>> I.LA_capture1(0.2,'rising')
"""
if trigger!=0:
if trigger not in ['rising','falling']:
print 'Error. invalid value for trigger:',trigger,'\nTry trigger="rising"'
return 0,[]
self.start_one_channel_LA(True,'ID1',edge=trigger,trigger_channels=['ID1'])
else:
self.start_one_channel_LA(False,'ID1')
time.sleep(waiting_time)
data=self.get_LA_initial_states()
tmp = self.fetch_long_data_from_LA(data[0],1)
return data[4][0],tmp/64e6
def __start_one_channel_LA_backup__(self,trigger=1,channel='ID1',maximum_time=67,**args):
"""
start logging timestamps of rising/falling edges on ID1
================== ======================================================================================================
**Arguments**
================== ======================================================================================================
trigger Bool . Enable edge trigger on ID1. use keyword argument edge='rising' or 'falling'
channel 'ID1',...'LMETER','CH4'
maximum_time Total time to sample. If total time exceeds 67 seconds, a prescaler will be used in the reference clock
kwargs
triggger_channels array of digital input names that can trigger the acquisition.eg. trigger= ['ID1','ID2','ID3']
will triggger when a logic change specified by the keyword argument 'edge' occurs
on either or the three specified trigger inputs.
edge 'rising' or 'falling' . trigger edge type for trigger_channels.
================== ======================================================================================================
:return: Nothing
"""
self.clear_buffer(0,self.MAX_SAMPLES/2);
self.H.__sendByte__(TIMING)
self.H.__sendByte__(START_ONE_CHAN_LA)
self.H.__sendInt__(self.MAX_SAMPLES/4)
#trigchan bit functions
# b0 - trigger or not
# b1 - trigger edge . 1 => rising. 0 => falling
# b2, b3 - channel to acquire data from. ID1,ID2,ID3,ID4,COMPARATOR
# b4 - trigger channel ID1
# b5 - trigger channel ID2
# b6 - trigger channel ID3
if ('trigger_channels' in args) and trigger&1:
trigchans = args.get('trigger_channels',0)
if 'ID1' in trigchans : trigger|= (1<<4)
if 'ID2' in trigchans : trigger|= (1<<5)
if 'ID3' in trigchans : trigger|= (1<<6)
else:
trigger |= 1<<(self.__calcDChan__(channel)+4) #trigger on specified input channel if not trigger_channel argument provided
trigger |= 2 if args.get('edge',0)=='rising' else 0
trigger |= self.__calcDChan__(channel)<<2
self.H.__sendByte__(trigger)
self.H.__get_ack__()
self.digital_channels_in_buffer = 1
for a in self.dchans:
a.prescaler = 0
a.datatype='long'
a.length = self.MAX_SAMPLES/4
a.maximum_time = maximum_time*1e6 #conversion to uS
a.mode = EVERY_EDGE
#def start_one_channel_LA(self,**args):
"""
start logging timestamps of rising/falling edges on ID1
================== ======================================================================================================
**Arguments**
================== ======================================================================================================
args
channel 'ID1',...'LMETER','CH4'
trigger_channel 'ID1',...'LMETER','CH4'
channel_mode acquisition mode.
default value: 1(EVERY_EDGE)
EVERY_SIXTEENTH_RISING_EDGE = 5
EVERY_FOURTH_RISING_EDGE = 4
EVERY_RISING_EDGE = 3
EVERY_FALLING_EDGE = 2
EVERY_EDGE = 1
DISABLED = 0
trigger_edge 1=Falling edge
0=Rising Edge
-1=Disable Trigger
================== ======================================================================================================
:return: Nothing
"""
self.clear_buffer(0,self.MAX_SAMPLES/2);
self.H.__sendByte__(TIMING)
self.H.__sendByte__(START_ONE_CHAN_LA)
self.H.__sendInt__(self.MAX_SAMPLES/4)
aqchan = self.__calcDChan__(args.get('channel','ID1'))
aqmode = args.get('channel_mode',1)
if 'trigger_channel' in args:
trchan = self.__calcDChan__(args.get('trigger_channel','ID1'))
tredge = args.get('trigger_edge',0)
print 'trigger chan',trchan,' trigger edge ',tredge
if tredge!=-1:
self.H.__sendByte__((trchan<<4)|(tredge<<1)|1)
else:
self.H.__sendByte__(0) #no triggering
elif 'trigger_edge' in args:
tredge = args.get('trigger_edge',0)
if tredge!=-1:
self.H.__sendByte__((aqchan<<4)|(tredge<<1)|1) #trigger on acquisition channel
else:
self.H.__sendByte__(0) #no triggering
else:
self.H.__sendByte__(0) #no triggering
self.H.__sendByte__((aqchan<<4)|aqmode)
self.H.__get_ack__()
self.digital_channels_in_buffer = 1
a = self.dchans[0]
a.prescaler = 0
a.datatype='long'
a.length = self.MAX_SAMPLES/4
a.maximum_time = 67*1e6 #conversion to uS
a.mode = args.get('channel_mode',1)
a.initial_state_override=False
'''
if trmode in [3,4,5]:
a.initial_state_override = 2
elif trmode == 2:
a.initial_state_override = 1
'''
[docs] def start_one_channel_LA(self,**args):
"""
start logging timestamps of rising/falling edges on ID1
================== ======================================================================================================
**Arguments**
================== ======================================================================================================
args
channel 'ID1',...'LMETER','CH4'
trigger_channel 'ID1',...'LMETER','CH4'
channnel_mode acquisition mode.
default value: 1
EVERY_SIXTEENTH_RISING_EDGE = 5
EVERY_FOURTH_RISING_EDGE = 4
EVERY_RISING_EDGE = 3
EVERY_FALLING_EDGE = 2
EVERY_EDGE = 1
DISABLED = 0
trigger_mode same as channel_mode.
default_value : 3
================== ======================================================================================================
:return: Nothing
.. raw:: html
<iframe width="560" height="315" src="https://www.youtube.com/embed/vzjDV18AmOo" frameborder="0" allowfullscreen></iframe>
"""
self.clear_buffer(0,self.MAX_SAMPLES/2);
self.H.__sendByte__(TIMING)
self.H.__sendByte__(START_ALTERNATE_ONE_CHAN_LA)
self.H.__sendInt__(self.MAX_SAMPLES/4)
aqchan = self.__calcDChan__(args.get('channel','ID1'))
aqmode = args.get('channel_mode',1)
trchan = self.__calcDChan__(args.get('trigger_channel','ID1'))
trmode = args.get('trigger_mode',3)
self.H.__sendByte__((aqchan<<4)|aqmode)
self.H.__sendByte__((trchan<<4)|trmode)
self.H.__get_ack__()
self.digital_channels_in_buffer = 1
a = self.dchans[0]
a.prescaler = 0
a.datatype='long'
a.length = self.MAX_SAMPLES/4
a.maximum_time = 67*1e6 #conversion to uS
a.mode = args.get('channel_mode',1)
if trmode in [3,4,5]:
a.initial_state_override = 2
elif trmode == 2:
a.initial_state_override = 1
[docs] def start_two_channel_LA(self,trigger=1,maximum_time=67):
"""
start logging timestamps of rising/falling edges on ID1,AD2
============== ============================================================================================
**Arguments**
============== ============================================================================================
trigger Bool . Enable rising edge trigger on ID1
maximum_time Total time to sample. If total time exceeds 67 seconds, a prescaler will be used in the reference clock
============== ============================================================================================
::
"fetch_long_data_from_dma(points to read,1)" to get data acquired from channel 1
"fetch_long_data_from_dma(points to read,2)" to get data acquired from channel 2
The read data can be accessed from self.dchans[0 or 1]
"""
chans=[0,1]
modes=[1,1]
self.clear_buffer(0,self.MAX_SAMPLES);
self.H.__sendByte__(TIMING)
self.H.__sendByte__(START_TWO_CHAN_LA)
self.H.__sendInt__(self.MAX_SAMPLES/4)
self.H.__sendByte__(trigger|chans[0])
self.H.__sendByte__((modes[1]<<4)|modes[0]) #Modes. four bits each
self.H.__sendByte__((chans[1]<<4)|chans[0]) #Channels. four bits each
self.H.__get_ack__()
n=0;
for a in self.dchans[:2]:
a.prescaler = 0;a.length = self.MAX_SAMPLES/4; a.datatype='long';a.maximum_time = maximum_time*1e6 #conversion to uS
a.mode = modes[n];a.channel_number=chans[n]
n+=1
self.digital_channels_in_buffer = 2
[docs] def start_three_channel_LA(self,**args):
"""
start logging timestamps of rising/falling edges on ID1,ID2,ID3
================== ======================================================================================================
**Arguments**
================== ======================================================================================================
args
trigger_channel 'ID1',...'LMETER','CH4'
modes modes for each channel. Array .
default value: [1,1,1]
EVERY_SIXTEENTH_RISING_EDGE = 5
EVERY_FOURTH_RISING_EDGE = 4
EVERY_RISING_EDGE = 3
EVERY_FALLING_EDGE = 2
EVERY_EDGE = 1
DISABLED = 0
trigger_mode same as modes(previously documented keyword argument)
default_value : 3
================== ======================================================================================================
:return: Nothing
"""
self.clear_buffer(0,self.MAX_SAMPLES);
self.H.__sendByte__(TIMING)
self.H.__sendByte__(START_THREE_CHAN_LA)
self.H.__sendInt__(self.MAX_SAMPLES/4)
modes = args.get('modes',[1,1,1,1])
trchan = self.__calcDChan__(args.get('trigger_channel','ID1'))
trmode = args.get('trigger_mode',3)
self.H.__sendInt__(modes[0]|(modes[1]<<4)|(modes[2]<<8))
self.H.__sendByte__((trchan<<4)|trmode)
self.H.__get_ack__()
self.digital_channels_in_buffer = 3
n=0
for a in self.dchans[:3]:
a.prescaler = 0
a.length = self.MAX_SAMPLES/4
a.datatype='int'
a.maximum_time = 1e3 #< 1 mS between each consecutive level changes in the input signal must be ensured to prevent rollover
a.mode=modes[n]
if trmode in [3,4,5]:
a.initial_state_override = 2
elif trmode == 2:
a.initial_state_override = 1
n+=1
[docs] def start_four_channel_LA(self,trigger=1,maximum_time=0.001,mode=[1,1,1,1],**args):
"""
Four channel Logic Analyzer.
start logging timestamps from a 64MHz counter to record level changes on ID1,ID2,ID3,ID4.
============== ============================================================================================
**Arguments**
============== ============================================================================================
trigger Bool . Enable rising edge trigger on ID1
maximum_time Maximum delay expected between two logic level changes.
If total time exceeds 1 mS, a prescaler will be used in the reference clock
However, this only refers to the maximum time between two successive level changes. If a delay larger
than .26 S occurs, it will be truncated by modulo .26 S.
If you need to record large intervals, try single channel/ two channel modes which use 32 bit counters
capable of time interval up to 67 seconds.
mode modes for each channel. Array with four elements
default values: [1,1,1,1]
EVERY_SIXTEENTH_RISING_EDGE = 5
EVERY_FOURTH_RISING_EDGE = 4
EVERY_RISING_EDGE = 3
EVERY_FALLING_EDGE = 2
EVERY_EDGE = 1
DISABLED = 0
============== ============================================================================================
:return: Nothing
.. seealso::
Use :func:`fetch_long_data_from_LA` (points to read,x) to get data acquired from channel x.
The read data can be accessed from :class:`~Interface.dchans` [x-1]
"""
self.clear_buffer(0,self.MAX_SAMPLES);
prescale = 0
"""
if(maximum_time > 0.26):
#print 'too long for 4 channel. try 2/1 channels'
prescale = 3
elif(maximum_time > 0.0655):
prescale = 3
elif(maximum_time > 0.008191):
prescale = 2
elif(maximum_time > 0.0010239):
prescale = 1
"""
self.H.__sendByte__(TIMING)
self.H.__sendByte__(START_FOUR_CHAN_LA)
self.H.__sendInt__(self.MAX_SAMPLES/4)
self.H.__sendInt__(mode[0]|(mode[1]<<4)|(mode[2]<<8)|(mode[3]<<12))
self.H.__sendByte__(prescale) #prescaler
trigopts=0
trigopts |= 4 if args.get('trigger_ID1',0) else 0
trigopts |= 8 if args.get('trigger_ID2',0) else 0
trigopts |= 16 if args.get('trigger_ID3',0) else 0
if (trigopts==0): trigger|=4 #select one trigger channel(ID1) if none selected
trigopts |= 2 if args.get('edge',0)=='rising' else 0
trigger|=trigopts
self.H.__sendByte__(trigger)
self.H.__get_ack__()
self.digital_channels_in_buffer = 4
n=0
for a in self.dchans:
a.prescaler = prescale
a.length = self.MAX_SAMPLES/4
a.datatype='int'
a.maximum_time = maximum_time*1e6 #conversion to uS
a.mode=mode[n]
n+=1
[docs] def get_LA_initial_states(self):
"""
fetches the initial states before the logic analyser started
:return: chan1 progress,chan2 progress,chan3 progress,chan4 progress,[ID1,ID2,ID3,ID4]. eg. [1,0,1,1]
"""
self.H.__sendByte__(TIMING)
self.H.__sendByte__(GET_INITIAL_DIGITAL_STATES)
initial=self.H.__getInt__()
A=(self.H.__getInt__()-initial)/2
B=(self.H.__getInt__()-initial)/2-self.MAX_SAMPLES/4
C=(self.H.__getInt__()-initial)/2-2*self.MAX_SAMPLES/4
D=(self.H.__getInt__()-initial)/2-3*self.MAX_SAMPLES/4
s=self.H.__getByte__()
s_err=self.H.__getByte__()
self.H.__get_ack__()
if A==0: A=self.MAX_SAMPLES/4
if B==0: B=self.MAX_SAMPLES/4
if C==0: C=self.MAX_SAMPLES/4
if D==0: D=self.MAX_SAMPLES/4
if A<0: A=0
if B<0: B=0
if C<0: C=0
if D<0: D=0
#print [(s&1!=0),(s&2!=0),(s&4!=0),(s&8!=0)],[(s_err&1!=0),(s_err&2!=0),(s_err&4!=0),(s&8!=0)]
return A,B,C,D,[(s&1!=0),(s&2!=0),(s&4!=0),(s&8!=0)]
[docs] def fetch_int_data_from_LA(self,bytes,chan=1):
"""
fetches the data stored by DMA. integer address increments
============== ============================================================================================
**Arguments**
============== ============================================================================================
bytes: number of readings(integers) to fetch
chan: channel number (1-4)
============== ============================================================================================
"""
self.H.__sendByte__(TIMING)
self.H.__sendByte__(FETCH_INT_DMA_DATA)
self.H.__sendInt__(bytes)
self.H.__sendByte__(chan-1)
ss = self.H.fd.read(bytes*2)
t = np.zeros(bytes*2)
for a in range(bytes):
t[a] = ord(ss[0+a*2]) |(ord(ss[1+a*2])<<8)
self.H.__get_ack__()
t=np.trim_zeros(t)
b=1;rollovers=0
while b<len(t):
if(t[b]<t[b-1] and t[b]!=0):
rollovers+=1
t[b:]+=65535
b+=1
return t
[docs] def fetch_long_data_from_LA(self,bytes,chan=1):
"""
fetches the data stored by DMA. long address increments
============== ============================================================================================
**Arguments**
============== ============================================================================================
bytes: number of readings(long integers) to fetch
chan: channel number (1,2)
============== ============================================================================================
"""
self.H.__sendByte__(TIMING)
self.H.__sendByte__(FETCH_LONG_DMA_DATA)
self.H.__sendInt__(bytes)
self.H.__sendByte__(chan-1)
ss = self.H.fd.read(bytes*4)
tmp = np.zeros(bytes)
for a in range(bytes):
tmp[a] = ord(ss[0+a*4])|(ord(ss[1+a*4])<<8)|(ord(ss[2+a*4])<<16)|(ord(ss[3+a*4])<<24)
self.H.__get_ack__()
tmp = np.trim_zeros(tmp)
return tmp
[docs] def fetch_LA_channels(self,trigchan=1):
"""
reads and stores the channels in self.dchans.
============== ============================================================================================
**Arguments**
============== ============================================================================================
trigchan: channel number which should be treated as a trigger. (1,2,3,4). Its first timestamp
is subtracted from the rest of the channels.
============== ============================================================================================
"""
data=self.get_LA_initial_states()
s=data[4]
for a in self.dchans:
if a.channel_number==self.digital_channels_in_buffer: break
samples = a.length
if a.datatype=='int':
tmp = self.fetch_int_data_from_LA(data[a.channel_number],a.channel_number+1)
a.load_data(s,tmp)
#print a.channel_number,samples,tmp[:10]
else:
tmp = self.fetch_long_data_from_LA(data[a.channel_number*2],a.channel_number+1)
#if len(tmp)>10: print tmp[0],np.diff(tmp[:10])
a.load_data(s,tmp)
offset=0
for a in self.dchans:
if a.channel_number==self.digital_channels_in_buffer: break
a.timestamps -= offset
a.generate_axes()
return True
[docs] def get_states(self):
"""
gets the state of the digital inputs. returns dictionary with keys 'ID1','ID2','ID3','ID4'
>>> print get_states()
{'ID1': True, 'ID2': True, 'ID3': True, 'ID4': False}
"""
self.H.__sendByte__(DIN)
self.H.__sendByte__(GET_STATES)
s=self.H.__getByte__()
self.H.__get_ack__()
return {'ID1':(s&1!=0),'ID2':(s&2!=0),'ID3':(s&4!=0),'ID4':(s&8!=0)}
[docs] def get_state(self,input_id):
"""
returns the logic level on the specified input (ID1,ID2,ID3, or ID4)
+----------+-----------------------------------------------------------------+
|Arguments |Description |
+==========+=================================================================+
|input_id | the input channel |
+ + +
| | * 'ID1' -> state of ID1 |
+ + +
| | * 'ID2' -> state of ID2 |
+ + +
| | * 'ID3' -> state of ID3 |
+ + +
| | * 'ID4' -> state of ID4 |
+----------+-----------------------------------------------------------------+
>>> print I.get_state(I.ID1)
False
"""
return self.get_states()[input_id]
[docs] def set_state(self,**kwargs):
"""
set the logic level on digital outputs OD1,OD2,SQR1,SQR2
For newer units, OD1,OD2 have been renamed to SQR3,SQR4. Both mnemonics will work.
============== ============================================================================================
**Arguments**
============== ============================================================================================
\*\*kwargs OD1,OD2,SQR1,SQR2
states(0 or 1)
============== ============================================================================================
>>> I.set_state(OD1=1,OD2=0,SQR1=1)
sets OD1,SQR1 HIGH, OD2 LOw, but leave SQR2 untouched.
"""
data=0
if kwargs.has_key('OD1'):
data|= 0x40|(kwargs.get('OD1')<<2)
if kwargs.has_key('OD2'):
data|= 0x80|(kwargs.get('OD2')<<3)
if kwargs.has_key('SQR1'):
data|= 0x10|(kwargs.get('SQR1'))
if kwargs.has_key('SQR2'):
data|= 0x20|(kwargs.get('SQR2')<<1)
if kwargs.has_key('SQR3'):
data|= 0x40|(kwargs.get('SQR3')<<2)
if kwargs.has_key('SQR4'):
data|= 0x80|(kwargs.get('SQR4')<<3)
self.H.__sendByte__(DOUT)
self.H.__sendByte__(SET_STATE)
self.H.__sendByte__(data)
self.H.__get_ack__()
def __get_capacitor_range__(self,ctime):
self.H.__sendByte__(COMMON)
self.H.__sendByte__(GET_CAP_RANGE)
self.H.__sendInt__(ctime)
V_sum = self.H.__getInt__()
self.H.__get_ack__()
V=V_sum*3.3/16/4095
C = -ctime*1e-6/1e4/np.log(1-V/3.3)
return V,C
[docs] def get_capacitor_range(self):
"""
Charges a capacitor connected to IN1 via a 20K resistor from a 3.3V source for a fixed interval
Returns the capacitance calculated using the formula Vc = Vs(1-exp(-t/RC))
This function allows an estimation of the parameters to be used with the :func:`get_capacitance` function.
"""
t=10
P=[1.5,50e-12]
for a in range(4):
P=list(self.__get_capacitor_range__(20*10**a))
if(P[0]>1.5):
if a==0 and P[0]>3.28: #pico farads range. Values will be incorrect using this method
P[1]=50e-12
break
return P
[docs] def get_capacitance(self,current_range,trim, Charge_Time): #time in uS
"""
measures capacitance of component connected between IN1 and ground
.. warning:: Non standard arguments! Needs to be rewritten
:param int current_range:
current range to use (0,1,2,3) ->(550uA,.55uA,5.5uA,55uA)
:param int trim:
trimming the current range selected. set as 0
:param int Charge_Time:
total time in microseconds that the current range will be activated before measuring the voltage across it.
:return: Voltage,Charging current used,Charging time, Capacitance
.. math::
Q_{stored} = C*V
I_{constant}*time = C*V
C = I_{constant}*time/V_{measured}
"""
self.H.__sendByte__(COMMON)
currents=[0.55e-3,0.55e-6,0.55e-5,0.55e-4]
self.H.__sendByte__(GET_CAPACITANCE)
self.H.__sendByte__(current_range)
if(trim<0):
self.H.__sendByte__( int(31-abs(trim)/2)|32)
else:
self.H.__sendByte__(int(trim/2))
self.H.__sendInt__(Charge_Time)
time.sleep(Charge_Time*1e-6+.02)
V = 3.3*self.H.__getInt__()/4095
self.H.__get_ack__()
Charge_Current = currents[current_range]*(100+trim)/100.0
C = Charge_Current*Charge_Time*1e-6/V - self.SOCKET_CAPACITANCE
print 'Current if C=470pF :',V*(470e-12+self.SOCKET_CAPACITANCE)/(Charge_Time*1e-6)
return V,Charge_Current,Charge_Time,C
[docs] def get_inductance(self):
"""
measure the value of the inductor connected to the Inductance measurement unit
F_out must be connected to IN3 via a short wire
:return: inductance
"""
f1=1.5491e6
c1=1.09017e-9
l1=9.68246e-06
f3=self.get_high_freq('LMETER')#self.get_freq(LMETER,0.5)
if f3>1:return (1.0/(c1*f3*f3*4*math.pi*math.pi))-l1
else: return 0
[docs] def restoreStandalone(self):
self.H.__sendByte__(COMMON)
self.H.__sendByte__(RESTORE_STANDALONE)
[docs] def read_flash(self,page,location):
"""
Reads 16 BYTES from the specified location
================ ============================================================================================
**Arguments**
================ ============================================================================================
page page number. 20 pages with 2KBytes each
location The flash location(0 to 63) to read from .
================ ============================================================================================
:return: a string of 16 characters read from the location
"""
self.H.__sendByte__(FLASH)
self.H.__sendByte__(READ_FLASH)
self.H.__sendByte__(page) #send the page number. 20 pages with 2K bytes each
self.H.__sendByte__(location) #send the location
ss=self.H.fd.read(16)
self.H.__get_ack__()
return ss
[docs] def read_bulk_flash(self,page,bytes):
"""
Reads BYTES from the specified location
================ ============================================================================================
**Arguments**
================ ============================================================================================
page Block number. 0-20. each block is 2kB.
bytes Total bytes to read
================ ============================================================================================
:return: a string of 16 characters read from the location
"""
self.H.__sendByte__(FLASH)
self.H.__sendByte__(READ_BULK_FLASH)
self.H.__sendInt__(bytes) #send the location
self.H.__sendByte__(page)
ss=self.H.fd.read(bytes)
self.H.__get_ack__()
return ss
[docs] def write_flash(self,page,location,string_to_write):
"""
write a 16 BYTE string to the selected location (0-63)
DO NOT USE THIS UNLESS YOU'RE ABSOLUTELY SURE KNOW THIS!
YOU MAY END UP OVERWRITING THE CALIBRATION DATA, AND WILL HAVE
TO GO THROUGH THE TROUBLE OF GETTING IT FROM THE MANUFACTURER AND
REFLASHING IT.
================ ============================================================================================
**Arguments**
================ ============================================================================================
page page number. 20 pages with 2KBytes each
location The flash location(0 to 63) to write to.
string_to_write a string of 16 characters can be written to each location
================ ============================================================================================
"""
while(len(string_to_write)<16):string_to_write+='.'
self.H.__sendByte__(FLASH)
self.H.__sendByte__(WRITE_FLASH) #indicate a flash write coming through
self.H.__sendByte__(page) #send the page number. 20 pages with 2K bytes each
self.H.__sendByte__(location) #send the location
self.H.fd.write(string_to_write)
time.sleep(0.1)
self.H.__get_ack__()
[docs] def write_bulk_flash(self,location,bytearray):
"""
write a byte array to the entire flash page. Erases any other data
DO NOT USE THIS UNLESS YOU'RE ABSOLUTELY SURE KNOW THIS!
YOU MAY END UP OVERWRITING THE CALIBRATION DATA, AND WILL HAVE
TO GO THROUGH THE TROUBLE OF GETTING IT FROM THE MANUFACTURER AND
REFLASHING IT.
================ ============================================================================================
**Arguments**
================ ============================================================================================
location Block number. 0-20. each block is 2kB.
bytearray Array to dump onto flash. Max size 2048 bytes
================ ============================================================================================
"""
print 'Dumping ',len(bytearray),' bytes into flash'
self.H.__sendByte__(FLASH)
self.H.__sendByte__(WRITE_BULK_FLASH) #indicate a flash write coming through
self.H.__sendInt__(len(bytearray)) #send the length
self.H.__sendByte__(location)
for n in range(len(bytearray)):
self.H.__sendByte__(bytearray[n])
#Printer('Bytes written: %d'%(n+1))
time.sleep(0.2)
self.H.__get_ack__()
[docs] def get_ctmu_voltage(self,channel,Crange,tgen=1):
"""
get_ctmu_voltage(5,2) will activate a constant current source of 5.5uA on IN1 and then measure the voltage at the output.
If a diode is used to connect IN1 to ground, the forward voltage drop of the diode will be returned. e.g. .6V for a 4148diode.
If a resistor is connected, ohm's law will be followed within reasonable limits
channel=5 for IN1
CRange=0 implies 550uA
CRange=1 implies 0.55uA
CRange=2 implies 5.5uA
CRange=3 implies 55uA
:return: Voltage
"""
if channel=='CAP':channel=5
self.H.__sendByte__(COMMON)
self.H.__sendByte__(GET_CTMU_VOLTAGE)
self.H.__sendByte__((channel)|(Crange<<5)|(tgen<<7))
time.sleep(0.001)
self.H.__getByte__() #junk byte '0' sent since UART was in IDLE mode and needs to recover.
#V = [self.H.__getInt__() for a in range(16)]
#print V
#v=sum(V)
v=self.H.__getInt__() #16*voltage across the current source
self.H.__get_ack__()
V=3.3*v/15./4096
return V
[docs] def get_temperature(self):
"""
return the processor's temperature
:return: Chip Temperature in degree Celcius
"""
V=self.get_ctmu_voltage(0b11110,3,0)
return (783.24-V*1000)/1.87
[docs] def send_address(self,c):
"""
DEPRECATED. PIC1572 waveform generators have been replaced with AD9833 based 28 bit wavegens.
Outputs an address through the second UART
This is used to select which PIC1572 will listen to incoming data
============== ============================================================================================
**Arguments**
============== ============================================================================================
address slave device address
============== ============================================================================================
:return: nothing
"""
self.H.__sendByte__(UART_2)
self.H.__sendByte__(SEND_ADDRESS)
self.H.__sendByte__(c)
self.H.__get_ack__()
[docs] def set_sine(self,frequency,register=0):
"""
Set the frequency of wavegen
============== ============================================================================================
**Arguments**
============== ============================================================================================
frequency Frequency to set on wave generator . 0MHz to 8MHz
register Frequency register to update. The wavegen has two different registers for storing the
output frequency. These are used to quickly switch between the two registers for applications
like frequency shift keying(FSK)
============== ============================================================================================
:return: frequency
"""
self.SPI.set_parameters(1,7,1,1)
freq_setting = int(round(1.* frequency * self.DDS_MAX_FREQ / self.DDS_CLOCK))
self.H.__sendByte__(WAVEGEN)
self.H.__sendByte__(SET_WG)
self.H.__sendByte__(14+register)
self.H.__sendInt__((freq_setting)&0x3FFF)
self.H.__sendInt__((freq_setting>>14)&0x3FFF)
self.H.__get_ack__()
self.SPI.set_parameters(1,7,1,0)
return frequency
[docs] def select_freq(self,register):
"""
The waveform generator has two frequency registers. That is, you may store two different frequency
values with distinct waveform shapes, and quickly toggle between them using this command.
refer to :func:`set_sine`
============== ============================================================================================
**Arguments**
============== ============================================================================================
register 0 or 1
============== ============================================================================================
"""
self.SPI.set_parameters(1,7,1,1)
self.H.__sendByte__(WAVEGEN)
self.H.__sendByte__(SELECT_FREQ_REGISTER)
self.H.__sendByte__((1<<register))
self.H.__get_ack__()
self.SPI.set_parameters(1,7,1,0)
[docs] def set_pvs1(self,val):
"""
Set the voltage on PVS1
12-bit DAC... -5V to 5V
============== ============================================================================================
**Arguments**
============== ============================================================================================
val Output voltage on PVS1. -5V to 5V
============== ============================================================================================
"""
return self.DAC.setVoltage('PVS1',val)
[docs] def set_pvs2(self,val):
"""
Set the voltage on PVS2.
12-bit DAC... 0 - 3.3V
============== ============================================================================================
**Arguments**
============== ============================================================================================
val Output voltage on PVS2. 0-3.3V
============== ============================================================================================
"""
return self.DAC.setVoltage('PVS2',val)
[docs] def set_pvs3(self,val):
"""
Set the voltage on PVS3
============== ============================================================================================
**Arguments**
============== ============================================================================================
val Output voltage on PVS3. 0V to 3.3V
============== ============================================================================================
:return: Actual value set on pvs3
"""
return self.DAC.setVoltage('PVS3',val)
[docs] def set_pcs(self,val):
"""
Set programmable current source
============== ============================================================================================
**Arguments**
============== ============================================================================================
val Output current on PCS. 0 to 3.3mA. Subject to load resistance. Read voltage on PCS to check.
============== ============================================================================================
:return: value attempted to set on pcs
"""
return self.DAC.setVoltage('PCS',val)
[docs] def setOnboardLED(self,R,G,B):
"""
set shade of WS2182 LED on PIC1572 1 RA2
============== ============================================================================================
**Arguments**
============== ============================================================================================
R brightness of red colour 0-255
G brightness of green colour 0-255
B brightness of blue colour 0-255
============== ============================================================================================
"""
self.H.__sendByte__(COMMON)
self.H.__sendByte__(SET_ONBOARD_RGB)
G=reverse_bits(G);R=reverse_bits(R);B=reverse_bits(B)
self.H.__sendByte__(B)
self.H.__sendByte__(R)
self.H.__sendByte__(G)
print B,R,G
time.sleep(0.001)
self.H.__get_ack__()
return B,R,G
[docs] def WS2812B(self,cols):
"""
set shade of WS2182 LED on SQR1
============== ============================================================================================
**Arguments**
============== ============================================================================================
cols 2Darray [[R,G,B],[R2,G2,B2],[R3,G3,B3]...]
brightness of R,G,B ( 0-255 )
============== ============================================================================================
.. raw:: html
<iframe width="560" height="315" src="https://www.youtube.com/embed/E7Q4B1jeKH0" frameborder="0" allowfullscreen></iframe>
"""
self.H.__sendByte__(COMMON)
self.H.__sendByte__(SET_RGB)
self.H.__sendByte__(len(cols)*3)
for col in cols:
R=reverse_bits(int(col[0]));G=reverse_bits(int(col[1]));B=reverse_bits(int(col[2]))
self.H.__sendByte__(G); self.H.__sendByte__(R);self.H.__sendByte__(B)
self.H.__get_ack__()
[docs] def fetch_buffer(self,starting_position=0,total_points=100):
"""
"""
self.H.__sendByte__(COMMON)
self.H.__sendByte__(RETRIEVE_BUFFER)
self.H.__sendInt__(starting_position)
self.H.__sendInt__(total_points)
for a in range(total_points): self.buff[a]=self.H.__getInt__()
self.H.__get_ack__()
[docs] def clear_buffer(self,starting_position,total_points):
"""
returns a section of the buffer
"""
self.H.__sendByte__(COMMON)
self.H.__sendByte__(CLEAR_BUFFER)
self.H.__sendInt__(starting_position)
self.H.__sendInt__(total_points)
self.H.__get_ack__()
[docs] def start_streaming(self,tg,channel='CH1'):
"""
Instruct the ADC to start streaming 8-bit data. use stop_streaming to stop.
============== ============================================================================================
**Arguments**
============== ============================================================================================
tg timegap. 250KHz clock
channel channel 'CH1'... 'CH9','IN1','SEN'
============== ============================================================================================
"""
if(self.streaming):self.stop_streaming()
self.H.__sendByte__(ADC)
self.H.__sendByte__(START_ADC_STREAMING)
self.H.__sendByte__(self.__calcCHOSA__(channel))
self.H.__sendInt__(tg) #Timegap between samples. 8MHz timer clock
self.streaming=True
[docs] def stop_streaming(self):
"""
Instruct the ADC to stop streaming data
"""
if(self.streaming):
self.H.__sendByte__(STOP_STREAMING)
self.H.fd.read(20000)
self.H.fd.flush()
else:
print 'not streaming'
self.streaming=False
[docs] def sqr1(self,freq,duty_cycle,echo=False):
"""
Set the frequency of sqr1
============== ============================================================================================
**Arguments**
============== ============================================================================================
frequency Frequency
duty_cycle Percentage of high time
============== ============================================================================================
"""
p=[1,8,64,256]
prescaler=0
while prescaler<=3:
wavelength = 64e6/freq/p[prescaler]
if wavelength<65525: break
prescaler+=1
if prescaler==4:
print 'out of range'
return
high_time = wavelength*duty_cycle/100.
print wavelength,high_time,prescaler
if echo:print wavelength,high_time,prescaler
self.H.__sendByte__(WAVEGEN)
self.H.__sendByte__(SET_SQR1)
self.H.__sendInt__(int(round(wavelength)))
self.H.__sendInt__(int(round(high_time)))
self.H.__sendByte__(prescaler)
self.H.__get_ack__()
[docs] def sqr2(self,freq,duty_cycle):
"""
Set the frequency of sqr2
============== ============================================================================================
**Arguments**
============== ============================================================================================
frequency Frequency
duty_cycle Percentage of high time
============== ============================================================================================
"""
p=[1,8,64,256]
prescaler=0
while prescaler<=3:
wavelength = 64e6/freq/p[prescaler]
if wavelength<65525: break
prescaler+=1
if prescaler==4:
print 'out of range'
return
high_time = wavelength*duty_cycle/100.
print wavelength,high_time,prescaler
self.H.__sendByte__(WAVEGEN)
self.H.__sendByte__(SET_SQR2)
self.H.__sendInt__(int(round(wavelength)))
self.H.__sendInt__(int(round(high_time)))
self.H.__sendByte__(prescaler)
self.H.__get_ack__()
[docs] def set_sqrs(self,wavelength,phase,high_time1,high_time2,prescaler=1):
"""
Set the frequency of sqr1,sqr2, with phase shift
============== ============================================================================================
**Arguments**
============== ============================================================================================
wavelength Number of 64Mhz/prescaler clock cycles per wave
phase Clock cycles between rising edges of SQR1 and SQR2
high time1 Clock cycles for which SQR1 must be HIGH
high time2 Clock cycles for which SQR2 must be HIGH
prescaler 0,1,2. Divides the 64Mhz clock by 8,64, or 256
============== ============================================================================================
"""
self.H.__sendByte__(WAVEGEN)
self.H.__sendByte__(SET_SQRS)
self.H.__sendInt__(wavelength)
self.H.__sendInt__(phase)
self.H.__sendInt__(high_time1)
self.H.__sendInt__(high_time2)
self.H.__sendByte__(prescaler)
self.H.__get_ack__()
[docs] def sqr4_pulse(self,freq,h0,p1,h1,p2,h2,p3,h3):
"""
Output one set of phase correlated square pulses on SQR1,SQR2,OD1,OD2 .
============== ============================================================================================
**Arguments**
============== ============================================================================================
freq Frequency in Hertz
h0 Duty Cycle for SQR1 (0-1)
p1 Phase shift for SQR2 (0-1)
h1 Duty Cycle for SQR2 (0-1)
p2 Phase shift for OD1 (0-1)
h2 Duty Cycle for OD1 (0-1)
p3 Phase shift for OD2 (0-1)
h3 Duty Cycle for OD2 (0-1)
============== ============================================================================================
"""
wavelength = int(64e6/freq)
if wavelength>65535:
print 'frequency too low.'
return
self.H.__sendByte__(WAVEGEN)
self.H.__sendByte__(SQR4)
self.H.__sendInt__(wavelength)
self.H.__sendInt__(int(wavelength*h0))
params = 0
if p1==0:p1=1
if p2==0:p2=1
if p3==0:p3=1
if h1+p1>1:
A1 = int((h1+p1)%1*wavelength)
B1 = int((p1)*wavelength)
params|=(1<<2)
else:
A1 = int(p1*wavelength)
B1 = int((h1+p1)*wavelength)
if h2+p2>1:
A2 = int((h2+p2)%1*wavelength)
B2 = int((p2)*wavelength)
params|=(1<<3)
else:
A2 = int(p2*wavelength)
B2 = int((h2+p2)*wavelength)
if h3+p3>1:
A3 = int((h3+p3)%1*wavelength)
B3 = int((p3)*wavelength)
params|=(1<<4)
else:
A3 = int(p3*wavelength)
B3 = int((h3+p3)*wavelength)
print wavelength,A1,B1,A2,B2,A3,B3
self.H.__sendInt__(A1)
self.H.__sendInt__(B1)
self.H.__sendInt__(A2)
self.H.__sendInt__(B2)
self.H.__sendInt__(A3)
self.H.__sendInt__(B3)
self.H.__sendByte__(params)
self.H.__get_ack__()
[docs] def sqr4_continuous(self,freq,h0,p1,h1,p2,h2,p3,h3):
"""
Initialize continuously running phase correlated square waves on SQR1,SQR2,OD1,OD2
============== ============================================================================================
**Arguments**
============== ============================================================================================
freq Frequency in Hertz
h0 Duty Cycle for SQR1 (0-1)
p1 Phase shift for SQR2 (0-1)
h1 Duty Cycle for SQR2 (0-1)
p2 Phase shift for OD1 (0-1)
h2 Duty Cycle for OD1 (0-1)
p3 Phase shift for OD2 (0-1)
h3 Duty Cycle for OD2 (0-1)
============== ============================================================================================
"""
wavelength = int(64e6/freq)
params=0
if wavelength>0xFFFF00:
print 'frequency too low.'
return
elif wavelength>0x3FFFC0:
wavelength = int(64e6/freq/256)
params=3
elif wavelength>0x7FFF8:
params=2
wavelength = int(64e6/freq/64)
elif wavelength>0xFFFF:
params=1
wavelength = int(64e6/freq/8)
params|= (1<<5)
self.H.__sendByte__(WAVEGEN)
self.H.__sendByte__(SQR4)
self.H.__sendInt__(wavelength)
self.H.__sendInt__(int(wavelength*h0))
A1 = int(p1%1*wavelength)
B1 = int((h1+p1)%1*wavelength)
A2 = int(p2%1*wavelength)
B2 = int((h2+p2)%1*wavelength)
A3 = int(p3%1*wavelength)
B3 = int((h3+p3)%1*wavelength)
print p1,h1,p2,h2,p3,h3
print wavelength,int(wavelength*h0),A1,B1,A2,B2,A3,B3
self.H.__sendInt__(A1)
self.H.__sendInt__(B1)
self.H.__sendInt__(A2)
self.H.__sendInt__(B2)
self.H.__sendInt__(A3)
self.H.__sendInt__(B3)
self.H.__sendByte__(params)
self.H.__get_ack__()
[docs] def delay_generator(self,**args):
"""
UNSUPPORTED IN FIRMWARE. DO NOT USE
Use Comparator on CH4 to triggger output pulses after precise intervals.
============== ============================================================================================
**Arguments**
============== ============================================================================================
\*\*kwargs
h0 High time for SQR1 (0-0xFFFF uS)
p1 Phase shift for SQR2 (0-0xFFFF uS)
h1 High time for SQR2 (0-0xFFFF uS)
p2 Phase shift for OD1 (0-0xFFFF uS)
h2 High time for OD1 (0-0xFFFF uS)
p3 Phase shift for OD2 (0-0xFFFF uS)
h3 High time for OD2 (0-0xFFFF uS)
============== ============================================================================================
NOTE: hx+px must be less than 0xFFFF
"""
wavelength = 0xFFFF
params = (1<<5)|(1<<6)
self.H.__sendByte__(WAVEGEN)
self.H.__sendByte__(SQR4)
self.H.__sendInt__(wavelength)
h0 = args.get('h0',100);h1 = args.get('h1',100);h2 = args.get('h2',100);h3 = args.get('h3',100);
p1 = args.get('p1',0);p2 = args.get('p2',0);p3 = args.get('p3',0);
self.H.__sendInt__(int(64*h0))
A1 = int(p1*64)
B1 = int((h1+p1)*64)
A2 = int(p2*64)
B2 = int((h2+p2)*64)
A3 = int(p3*64)
B3 = int((h3+p3)*64)
self.H.__sendInt__(A1)
self.H.__sendInt__(B1)
self.H.__sendInt__(A2)
self.H.__sendInt__(B2)
self.H.__sendInt__(A3)
self.H.__sendInt__(B3)
self.H.__sendByte__(params)
self.H.__get_ack__()
[docs] def map_reference_clock(self,scaler,*args):
"""
Map the internal oscillator output to SQR1,SQR2,OD1 or OD2
The output frequency is 128/(1<<scaler) MHz
scaler [0-15]
* 0 -> 128MHz
* 1 -> 64MHz
* 2 -> 32MHz
* 3 -> 16MHz
* .
* .
* 15 ->128./32768 MHz
example::
>>> I.map_reference_clock(2,'sqr1','sqr2')
outputs 32 MHz on sqr1, sqr2 pins
.. note::
if you change the reference clock for 'wavegen' , the waveform generator resolution and range will also change.
default frequency for 'wavegen' is 16MHz. Setting to 1MHz will give you 16 times better resolution, but a usable range of
0Hz to about 100KHz instead of the original 2MHz.
"""
self.H.__sendByte__(WAVEGEN)
self.H.__sendByte__(MAP_REFERENCE)
chan=0
if 'sqr1' in args:chan|=1
if 'sqr2' in args:chan|=2
if 'od1' in args:chan|=4
if 'od2' in args:chan|=8
if 'wavegen' in args:chan|=16
self.H.__sendByte__(chan)
self.H.__sendByte__(scaler)
if 'wavegen' in args: self.DDS_CLOCK = 128e6/(1<<scaler)
self.H.__get_ack__()
[docs] def read_program_address(self,address):
"""
Reads and returns the value stored at the specified address in program memory
============== ============================================================================================
**Arguments**
============== ============================================================================================
address Address to read from. Refer to PIC24EP64GP204 programming manual
============== ============================================================================================
"""
self.H.__sendByte__(COMMON)
self.H.__sendByte__(READ_PROGRAM_ADDRESS)
self.H.__sendInt__(address&0xFFFF)
self.H.__sendInt__((address>>16)&0xFFFF)
v=self.H.__getInt__()
self.H.__get_ack__()
return v
def __write_program_address__(self,address,value):
"""
Writes a value to the specified address in program memory. Disabled in firmware.
============== ============================================================================================
**Arguments**
============== ============================================================================================
address Address to write to. Refer to PIC24EP64GP204 programming manual
Do Not Screw around with this. It won't work anyway.
============== ============================================================================================
"""
self.H.__sendByte__(COMMON)
self.H.__sendByte__(WRITE_PROGRAM_ADDRESS)
self.H.__sendInt__(address&0xFFFF)
self.H.__sendInt__((address>>16)&0xFFFF)
self.H.__sendInt__(value)
self.H.__get_ack__()
[docs] def read_data_address(self,address):
"""
Reads and returns the value stored at the specified address in RAM
============== ============================================================================================
**Arguments**
============== ============================================================================================
address Address to read from. Refer to PIC24EP64GP204 programming manual|
============== ============================================================================================
"""
self.H.__sendByte__(COMMON)
self.H.__sendByte__(READ_DATA_ADDRESS)
self.H.__sendInt__(address&0xFFFF)
v=self.H.__getInt__()
self.H.__get_ack__()
return v
[docs] def write_data_address(self,address,value):
"""
Writes a value to the specified address in RAM
============== ============================================================================================
**Arguments**
============== ============================================================================================
address Address to write to. Refer to PIC24EP64GP204 programming manual|
============== ============================================================================================
"""
self.H.__sendByte__(COMMON)
self.H.__sendByte__(WRITE_DATA_ADDRESS)
self.H.__sendInt__(address&0xFFFF)
self.H.__sendInt__(value)
self.H.__get_ack__()
[docs] def servo(self,chan,angle):
'''
Output A PWM waveform on SQR1/SQR2 corresponding to the angle specified in the arguments.
This is used to operate servo motors. Tested with 9G SG-90 Servo motor.
============== ============================================================================================
**Arguments**
============== ============================================================================================
chan 1 or 2. Whether to use SQ1 or SQ2 to output the PWM waveform used by the servo
angle 0-180. Angle corresponding to which the PWM waveform is generated.
============== ============================================================================================
'''
self.H.__sendByte__(WAVEGEN)
if chan==1:self.H.__sendByte__(SET_SQR1)
else:self.H.__sendByte__(SET_SQR2)
self.H.__sendInt__(10000)
self.H.__sendInt__(int(angle*1900/180))
self.H.__sendByte__(2)
self.H.__get_ack__()
[docs] def servo4(self,a1,a2,a3,a4):
"""
Operate Four servo motors independently using SQR1, SQR2, SQR3, SQR4.
tested with SG-90 9G servos.
============== ============================================================================================
**Arguments**
============== ============================================================================================
a1 Angle to set on Servo which uses SQR1 as PWM input. [0-180]
a2 Angle to set on Servo which uses SQR2 as PWM input. [0-180]
a3 Angle to set on Servo which uses SQR3 as PWM input. [0-180]
a4 Angle to set on Servo which uses SQR4 as PWM input. [0-180]
============== ============================================================================================
"""
params = (1<<5)|2 #continuous waveform. prescaler 2( 1:64)
self.H.__sendByte__(WAVEGEN)
self.H.__sendByte__(SQR4)
self.H.__sendInt__(10000) #10mS wavelength
self.H.__sendInt__(750+int(a1*1900/180))
self.H.__sendInt__(0)
self.H.__sendInt__(750+int(a2*1900/180))
self.H.__sendInt__(0)
self.H.__sendInt__(750+int(a3*1900/180))
self.H.__sendInt__(0)
self.H.__sendInt__(750+int(a4*1900/180))
self.H.__sendByte__(params)
self.H.__get_ack__()
[docs] def enableUartPassthrough(self,baudrate,persist=False):
'''
All data received by the device is relayed to an external port(SCL[TX],SDA[RX]) after this function is called
If a period > .5 seconds elapses between two transmit/receive events, the device resets
and resumes normal mode. This timeout feature has been implemented in lieu of a hard reset option.
can be used to load programs into secondary microcontrollers with bootloaders such ATMEGA, and ESP8266
============== ============================================================================================
**Arguments**
============== ============================================================================================
baudrate BAUDRATE to use
persist If set to True, the device will stay in passthrough mode until the next power cycle.
Otherwise(default scenario), the device will return to normal operation if no data is sent/
received for a period greater than one second at a time.
============== ============================================================================================
'''
self.H.__sendByte__(PASSTHROUGHS)
self.H.__sendByte__(PASS_UART)
self.H.__sendByte__(1 if persist else 0)
self.H.__sendInt__(int( round(((64e6/baudrate)/4)-1) ))
print 'BRGVAL:',int( round(((64e6/baudrate)/4)-1) )
time.sleep(0.1)
print 'junk bytes read:',len(self.H.fd.read(100))
[docs] def estimateDistance(self):
'''
Read data from ultrasonic distance sensor HC-SR04/HC-SR05. Sensors must have separate trigger and output pins.
First a 10uS pulse is output on SQR3. SQR3 must be connected to the TRIG pin on the sensor prior to use.
Upon receiving this pulse, the sensor emits a sequence of sound pulses, and the logic level of its output
pin(which we will monitor via ID1) is also set high. The logic level goes LOW when the sound packet
returns to the sensor, or when a timeout occurs.
The ultrasound sensor outputs a series of 8 sound pulses at 40KHz which corresponds to a time period
of 25uS per pulse. These pulses reflect off of the nearest object in front of the sensor, and return to it.
The time between sending and receiving of the pulse packet is used to estimate the distance.
If the reflecting object is either too far away or absorbs sound, less than 8 pulses may be received, and this
can cause a measurement error of 25uS which corresponds to 8mm.
'''
self.H.__sendByte__(NONSTANDARD_IO)
self.H.__sendByte__(HCSR04_HEADER)
timeout_msb = int((0.1*64e6))>>16
self.H.__sendInt__(timeout_msb)
A=self.H.__getLong__()
B=self.H.__getLong__()
tmt = self.H.__getInt__()
self.H.__get_ack__()
#print A,B
if(tmt >= timeout_msb or B==0):return 0
rtime = lambda t: t/64e6
return rtime(B-A+20)
[docs] def TemperatureAndHumidity(self):
'''
init AM2302.
This effort was a waste. There are better humidity and temperature sensors available which use well documented I2C
'''
self.H.__sendByte__(NONSTANDARD_IO)
self.H.__sendByte__(AM2302_HEADER)
self.H.__get_ack__()
self.digital_channels_in_buffer=1
[docs] def opticalArray(self,tg,delay,tp):
'''
read from AM2302
.. raw:: html
<iframe width="560" height="315" src="https://www.youtube.com/embed/PIIuwt4ZOh8" frameborder="0" allowfullscreen></iframe>
'''
samples=3694
self.H.__sendByte__(NONSTANDARD_IO)
self.H.__sendByte__(TCD1304_HEADER)
self.H.__sendByte__(self.__calcCHOSA__('CH5'))
self.H.__sendByte__(int(tg*8))
self.H.__sendInt__(delay)
self.H.__sendInt__(tp)
self.achans[0].gain = self.sensor_gain
self.achans[0].set_params(channel='CH5',length=samples,timebase=1,resolution=TWELVE_BIT)
self.samples=samples
self.channels_in_buffer=1
time.sleep(0.005)
self.H.__get_ack__()
[docs] def readLog(self):
'''
read hardware log.
'''
self.H.__sendByte__(COMMON)
self.H.__sendByte__(READ_LOG)
log = self.H.fd.readline().strip()
self.H.__get_ack__()
return log
def __del__(self):
self.H.fd.close()
if __name__ == "__main__":
print """this is not an executable file
from vLabtool import interface
I=interface.Interface()
You're good to go.
eg.
I.get_average_voltage('CH1')
"""