seapy.couplings.couplingsurfaceacoustical.tau

seapy.couplings.couplingsurfaceacoustical.tau(f, fc, rho_0, rho_s, c_0, S, U=0.0)[source]

Non-resonant transmission coefficient by Leppington et al (1987).

Parameters:
  • f – Frequency
  • fc – Critical frequency
  • rho_0 – Density air
  • rho_s – Density plate
  • c_0 – Speed of sound in air
  • S – Surface
  • U – Shape function

\tau = \left( \frac{\rho_0 c_0}{\pi f \rho_s \left(1-f^2/f_c^2 \right)} \right)^2  \left(  \ln{\left[ \frac{2 \pi f \sqrt{S}}{c_0} \right]}  + 0.160 + U(l_x,l_y) + \frac{1}{4 \mu^6} \left[(2\mu^2-1)(\mu^2+1)^2\ln{\left(\mu^2-1\right)} + (2\mu^2+1)(\mu^2-1)^2 \ln{\left(\mu^2+1\right)} - 4\mu^2 - 8\mu^6 \ln{\mu}  \right] \right)

See Craik, equation 4.22, page 101.

Note

The shape function U(l_x,l_y) is assumed to be zero.

Note

The term B3*(C1 + C2 + C3) (see source) can be ignored except close to the critical frequency. We will nevertheless calculate them, and in case they become nan we replace the factor with zero.

Previous topic

seapy.couplings.couplingsurfaceacoustical.CouplingSurfaceAcoustical

Next topic

seapy.couplings.couplingsurfaceplateacoustical.CouplingSurfacePlateAcoustical

This Page