skgpuppy.Utilities module¶
-
class
skgpuppy.Utilities.
cache_wrapper
(func)¶ Bases:
object
Wrapper to cache the function values
-
skgpuppy.Utilities.
expected_value_monte_carlo
(func, mu, Sigma_x, n=1000)¶ Parameters: - func – a function that expects an 1D np array
- mu – the mean of a multivariate normal
- Sigma_x – the cov of a multivariate nromal
- n – the number of samples to use
Returns: The expected value of func(x) * p_mvnorm(x|mu,Sigma_x)
-
skgpuppy.Utilities.
integrate
(func, bounds)¶ Converting the arguments to nquad style
Parameters: - func (function with parameter x (iterable of length n)) – function to integrate
- bounds (iterable of pairs of length n) – bounds for the integration
Returns: value of the integral
-
skgpuppy.Utilities.
integrate_hermgauss
(func, mean, sigma, order=1)¶ 1-d Gauss-Hermite quadrature
Parameters: - func – lambda x: y (x: float)
- mean – mean of normal weight function
- sigma – standard dev of normal weight function
- order – the order of the integration rule
Returns: \(E[f(X)] (X \sim \mathcal{N}(\mu,\sigma^2)) = \int_{-\infty}^{\infty}f(x)p(x),\mathrm{d}x\) with p being the normal density
-
skgpuppy.Utilities.
integrate_hermgauss_nd
(func, mean, Sigma_x, order)¶ n-d Gauss-Hermite quadrature
Parameters: - func – lambda x: y (x: vector of floats)
- mean – mean vector of normal weight function
- Sigma_x – covariance matrix of normal weight function
- order – the order of the integration rule
Returns: \(E[f(X)] (X \sim \mathcal{N}(\mu,\sigma^2)) = \int_{-\infty}^{\infty}f(x)p(x),\mathrm{d}x\) with p being the normal density
-
skgpuppy.Utilities.
minimize
(func, theta_start, bounds=None, constr=[], method='all', fprime=None)¶ Parameters: - func – function to minimize
- theta_start – start parameters
- bounds – array of bounds. Each bound is a tuple (min,max)
- constr – inequality constraints >= 0 as array of functions
- method – all, tnc, l_bfgs_b, cobyla, slsqp, bfgs, powell, cg, simplex or list of some of them
- fprime – gradient
Returns: The theta with the minimal function value
Note
constr for cobyla, slsqp, bounds for tnc, l_bfgs_b, slsqp
-
skgpuppy.Utilities.
mvnorm
(x, mean, K)¶ Parameters: - x – input vector
- mean – vector of means
- K – Covariance Matrix
Returns: density at x
-
skgpuppy.Utilities.
norm
(x, mean, sigma)¶ Density function of the normal distribution
Parameters: - x –
- mean –
- sigma –
Returns: density at x