skgpuppy.UncertaintyPropagation module¶
-
class
skgpuppy.UncertaintyPropagation.UncertaintyPropagation¶ Bases:
object-
propagate(y, u, Sigma_x)¶ Propagates the uncertain density Girard2004 (page 32)
Parameters: - y – point to estimate the output density at
- u – vector of means
- Sigma_x – covariance Matrix of the input
Returns: output density
-
propagate_many(yvec, u, Sigma_x)¶ Propagates the uncertain density Girard2004 (page 32)
Parameters: - yvec – vector of points to estimate the output density at
- u – vector of means
- Sigma_x – covariance Matrix of the input
Returns: output densities
-
-
class
skgpuppy.UncertaintyPropagation.UncertaintyPropagationApprox(gp)¶ Bases:
skgpuppy.UncertaintyPropagation.UncertaintyPropagationGAParameters: gp – callable gaussian process that returns mean and variance for a given input vector x -
propagate_GA(u, Sigma_x)¶
-
propagate_mean(u, Sigma_x)¶
-
-
class
skgpuppy.UncertaintyPropagation.UncertaintyPropagationExact(gp)¶ Bases:
skgpuppy.UncertaintyPropagation.UncertaintyPropagationGAParameters: gp – callable gaussian process that returns mean and variance for a given input vector x -
propagate_GA(u, Sigma_x)¶
-
propagate_mean(u, Sigma_x, C_ux=None)¶
-
-
class
skgpuppy.UncertaintyPropagation.UncertaintyPropagationGA(gp)¶ Bases:
objectSuperclass for all UncertaintyPropagationGA Classes
Parameters: gp – callable gaussian process that returns mean and variance for a given input vector x -
propagate_GA(u, Sigma_x)¶ Propagates the uncertainty using the gaussian approximation from Girard2004
Parameters: - u – vector of means
- Sigma_x – covariance Matrix of the input
Returns: mean, variance of the output
-
propagate_mean(u, Sigma_x)¶ Propagates the mean using the gaussian approximation from Girard2004
Parameters: - u – vector of means
- Sigma_x – covariance Matrix of the input
Returns: mean of the output
-
-
class
skgpuppy.UncertaintyPropagation.UncertaintyPropagationLinear(gp)¶ Bases:
skgpuppy.UncertaintyPropagation.UncertaintyPropagationGAParameters: gp – callable gaussian process that returns mean and variance for a given input vector x -
propagate_GA(u, Sigma_x)¶
-
propagate_mean(u, Sigma_x)¶
-
-
class
skgpuppy.UncertaintyPropagation.UncertaintyPropagationMC(gp, n=1000)¶ Bases:
skgpuppy.UncertaintyPropagation.UncertaintyPropagationGA,skgpuppy.UncertaintyPropagation.UncertaintyPropagationUsing Monte Carlo Integration -> Very inefficient but very stable
Parameters: - gp – callable gaussian process that returns mean and variance for a given input vector x
- n – number of samples
-
propagate(y, u, Sigma_x)¶
-
propagate_GA(u, Sigma_x)¶
-
propagate_many(yvec, u, Sigma_x)¶ Propagates the uncertain density Girard2004 (page 32)
Parameters: - yvec – vector of points to estimate the output density at
- u – vector of means
- Sigma_x – covariance Matrix of the input
Returns: output densities
-
propagate_mean(u, Sigma_x)¶
-
class
skgpuppy.UncertaintyPropagation.UncertaintyPropagationNumerical(gp)¶ Bases:
skgpuppy.UncertaintyPropagation.UncertaintyPropagationGA,skgpuppy.UncertaintyPropagation.UncertaintyPropagationThe numerical propagation works fine if we want predictions for the noisy f But it is unstable for small variances
Deprecated since version Use: UncertaintyPropagationNumericalHG instead
Parameters: gp – callable gaussian process that returns mean and variance for a given input vector x -
propagate(y, u, Sigma_x)¶
-
propagate_GA(u, Sigma_x)¶
-
propagate_many(yvec, u, Sigma_x)¶ Propagates the uncertain density Girard2004 (page 32)
Parameters: - yvec – vector of points to estimate the output density at
- u – vector of means
- Sigma_x – covariance Matrix of the input
Returns: output densities
-
propagate_mean(u, Sigma_x)¶
-
-
class
skgpuppy.UncertaintyPropagation.UncertaintyPropagationNumericalHG(gp)¶ Bases:
skgpuppy.UncertaintyPropagation.UncertaintyPropagationGA,skgpuppy.UncertaintyPropagation.UncertaintyPropagationThe numerical propagation works fine if we want predictions for the noisy f
Parameters: gp – callable gaussian process that returns mean and variance for a given input vector x -
propagate(y, u, Sigma_x)¶
-
propagate_GA(u, Sigma_x)¶
-
propagate_many(yvec, u, Sigma_x)¶ Propagates the uncertain density Girard2004 (page 32)
Parameters: - yvec – vector of points to estimate the output density at
- u – vector of means
- Sigma_x – covariance Matrix of the input
Returns: output densities
-
propagate_mean(u, Sigma_x)¶
-