skgpuppy.UncertaintyPropagation module¶
-
class
skgpuppy.UncertaintyPropagation.
UncertaintyPropagation
¶ Bases:
object
-
propagate
(y, u, Sigma_x)¶ Propagates the uncertain density Girard2004 (page 32)
Parameters: - y – point to estimate the output density at
- u – vector of means
- Sigma_x – covariance Matrix of the input
Returns: output density
-
propagate_many
(yvec, u, Sigma_x)¶ Propagates the uncertain density Girard2004 (page 32)
Parameters: - yvec – vector of points to estimate the output density at
- u – vector of means
- Sigma_x – covariance Matrix of the input
Returns: output densities
-
-
class
skgpuppy.UncertaintyPropagation.
UncertaintyPropagationApprox
(gp)¶ Bases:
skgpuppy.UncertaintyPropagation.UncertaintyPropagationGA
Parameters: gp – callable gaussian process that returns mean and variance for a given input vector x -
propagate_GA
(u, Sigma_x)¶
-
propagate_mean
(u, Sigma_x)¶
-
-
class
skgpuppy.UncertaintyPropagation.
UncertaintyPropagationExact
(gp)¶ Bases:
skgpuppy.UncertaintyPropagation.UncertaintyPropagationGA
Parameters: gp – callable gaussian process that returns mean and variance for a given input vector x -
propagate_GA
(u, Sigma_x)¶
-
propagate_mean
(u, Sigma_x, C_ux=None)¶
-
-
class
skgpuppy.UncertaintyPropagation.
UncertaintyPropagationGA
(gp)¶ Bases:
object
Superclass for all UncertaintyPropagationGA Classes
Parameters: gp – callable gaussian process that returns mean and variance for a given input vector x -
propagate_GA
(u, Sigma_x)¶ Propagates the uncertainty using the gaussian approximation from Girard2004
Parameters: - u – vector of means
- Sigma_x – covariance Matrix of the input
Returns: mean, variance of the output
-
propagate_mean
(u, Sigma_x)¶ Propagates the mean using the gaussian approximation from Girard2004
Parameters: - u – vector of means
- Sigma_x – covariance Matrix of the input
Returns: mean of the output
-
-
class
skgpuppy.UncertaintyPropagation.
UncertaintyPropagationLinear
(gp)¶ Bases:
skgpuppy.UncertaintyPropagation.UncertaintyPropagationGA
Parameters: gp – callable gaussian process that returns mean and variance for a given input vector x -
propagate_GA
(u, Sigma_x)¶
-
propagate_mean
(u, Sigma_x)¶
-
-
class
skgpuppy.UncertaintyPropagation.
UncertaintyPropagationMC
(gp, n=1000)¶ Bases:
skgpuppy.UncertaintyPropagation.UncertaintyPropagationGA
,skgpuppy.UncertaintyPropagation.UncertaintyPropagation
Using Monte Carlo Integration -> Very inefficient but very stable
Parameters: - gp – callable gaussian process that returns mean and variance for a given input vector x
- n – number of samples
-
propagate
(y, u, Sigma_x)¶
-
propagate_GA
(u, Sigma_x)¶
-
propagate_many
(yvec, u, Sigma_x)¶ Propagates the uncertain density Girard2004 (page 32)
Parameters: - yvec – vector of points to estimate the output density at
- u – vector of means
- Sigma_x – covariance Matrix of the input
Returns: output densities
-
propagate_mean
(u, Sigma_x)¶
-
class
skgpuppy.UncertaintyPropagation.
UncertaintyPropagationNumerical
(gp)¶ Bases:
skgpuppy.UncertaintyPropagation.UncertaintyPropagationGA
,skgpuppy.UncertaintyPropagation.UncertaintyPropagation
The numerical propagation works fine if we want predictions for the noisy f But it is unstable for small variances
Deprecated since version Use: UncertaintyPropagationNumericalHG instead
Parameters: gp – callable gaussian process that returns mean and variance for a given input vector x -
propagate
(y, u, Sigma_x)¶
-
propagate_GA
(u, Sigma_x)¶
-
propagate_many
(yvec, u, Sigma_x)¶ Propagates the uncertain density Girard2004 (page 32)
Parameters: - yvec – vector of points to estimate the output density at
- u – vector of means
- Sigma_x – covariance Matrix of the input
Returns: output densities
-
propagate_mean
(u, Sigma_x)¶
-
-
class
skgpuppy.UncertaintyPropagation.
UncertaintyPropagationNumericalHG
(gp)¶ Bases:
skgpuppy.UncertaintyPropagation.UncertaintyPropagationGA
,skgpuppy.UncertaintyPropagation.UncertaintyPropagation
The numerical propagation works fine if we want predictions for the noisy f
Parameters: gp – callable gaussian process that returns mean and variance for a given input vector x -
propagate
(y, u, Sigma_x)¶
-
propagate_GA
(u, Sigma_x)¶
-
propagate_many
(yvec, u, Sigma_x)¶ Propagates the uncertain density Girard2004 (page 32)
Parameters: - yvec – vector of points to estimate the output density at
- u – vector of means
- Sigma_x – covariance Matrix of the input
Returns: output densities
-
propagate_mean
(u, Sigma_x)¶
-