| Home | Trees | Indices | Help |
|
|---|
|
|
object --+
|
??.instance --+
|
CvStatModel --+
|
CvSVM
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
Inherited from Inherited from Inherited from |
|||
|
|||
|
|||
|
|||
C = 0
|
|||
COEF = 4
|
|||
C_SVC = 100
|
|||
DEGREE = 5
|
|||
EPS_SVR = 103
|
|||
GAMMA = 1
|
|||
LINEAR = 0
|
|||
NU = 3
|
|||
NU_SVC = 101
|
|||
NU_SVR = 104
|
|||
ONE_CLASS = 102
|
|||
P = 2
|
|||
POLY = 1
|
|||
RBF = 2
|
|||
SIGMOID = 3
|
|||
__instance_size__ = 144
|
|||
|
|||
| decision_func | |||
| this | |||
|
Inherited from |
|||
|
|||
__init__( (object)arg1) -> None :
C++ signature :
void __init__(_object*)
__init__( (object)arg1, (Mat)_train_data, (Mat)_responses [, (Mat)_var_idx=Mat() [, (Mat)_sample_idx=Mat() [, (CvSVMParams)_params=<pyopencv.ml_ext.CvSVMParams object at 0x02208990>]]]) -> None :
C++ signature :
void __init__(_object*,cv::Mat,cv::Mat [,cv::Mat=Mat() [,cv::Mat=Mat() [,CvSVMParams=<pyopencv.ml_ext.CvSVMParams object at 0x02208990>]]])
|
clear( (CvSVM)arg1) -> None :
C++ signature :
void clear(CvSVM {lvalue})
clear( (CvSVM)arg1) -> None :
C++ signature :
void clear(CvSVM_wrapper {lvalue})
|
get_default_grid( (object)param_id) -> CvParamGrid :
C++ signature :
CvParamGrid get_default_grid(int)
|
get_params( (CvSVM)arg1) -> CvSVMParams :
C++ signature :
CvSVMParams get_params(CvSVM {lvalue})
get_params( (CvSVM)arg1) -> CvSVMParams :
C++ signature :
CvSVMParams get_params(CvSVM_wrapper {lvalue})
|
get_support_vector( (object)self, (object)i) -> object :
C++ signature :
sdcpp::ndarray get_support_vector(boost::python::api::object,int)
|
get_support_vector_count( (CvSVM)arg1) -> int :
C++ signature :
int get_support_vector_count(CvSVM {lvalue})
get_support_vector_count( (CvSVM)arg1) -> int :
C++ signature :
int get_support_vector_count(CvSVM_wrapper {lvalue})
|
get_var_count( (CvSVM)arg1) -> int :
C++ signature :
int get_var_count(CvSVM {lvalue})
|
load( (CvSVM)arg1, (str)filename [, (str)name=None]) -> None :
C++ signature :
void load(CvSVM {lvalue},char const* [,char const*=None])
load( (CvSVM)arg1, (str)filename [, (str)name=None]) -> None :
C++ signature :
void load(CvSVM_wrapper {lvalue},char const* [,char const*=None])
|
predict( (CvSVM)inst, (Mat)_sample [, (bool)returnDFVal=False]) -> object :
Argument '_sample':
C++ type: ::CvMat const *
Python type: Mat
C++ signature :
boost::python::api::object predict(CvSVM,cv::Mat {lvalue} [,bool=False])
predict( (CvSVM)arg1, (Mat)_sample [, (bool)returnDFVal=False]) -> float :
C++ signature :
float predict(CvSVM {lvalue},cv::Mat [,bool=False])
predict( (CvSVM)arg1, (Mat)_sample [, (bool)returnDFVal=False]) -> float :
C++ signature :
float predict(CvSVM_wrapper {lvalue},cv::Mat [,bool=False])
|
read( (CvSVM)inst, (FileStorage)storage, (FileNode)node) -> None :
Argument 'storage':
C++ type: ::CvFileStorage *
Python type: FileStorage
Argument 'node':
C++ type: ::CvFileNode *
Python type: FileNode
C++ signature :
void read(CvSVM {lvalue},cv::FileStorage {lvalue},cv::FileNode {lvalue})
|
save( (CvSVM)arg1, (str)filename [, (str)name=None]) -> None :
C++ signature :
void save(CvSVM {lvalue},char const* [,char const*=None])
save( (CvSVM)arg1, (str)filename [, (str)name=None]) -> None :
C++ signature :
void save(CvSVM_wrapper {lvalue},char const* [,char const*=None])
|
train( (CvSVM)inst, (Mat)_train_data, (Mat)_responses [, (Mat)_var_idx=Mat() [, (Mat)_sample_idx=Mat() [, (CvSVMParams)_params=<pyopencv.ml_ext.CvSVMParams object at 0x02208800>]]]) -> object :
Argument '_train_data':
C++ type: ::CvMat const *
Python type: Mat
Argument '_responses':
C++ type: ::CvMat const *
Python type: Mat
Argument '_var_idx':
C++ type: ::CvMat const *
Python type: Mat
Argument '_sample_idx':
C++ type: ::CvMat const *
Python type: Mat
C++ signature :
boost::python::api::object train(CvSVM {lvalue},cv::Mat {lvalue},cv::Mat {lvalue} [,cv::Mat=Mat() [,cv::Mat=Mat() [,CvSVMParams=<pyopencv.ml_ext.CvSVMParams object at 0x02208800>]]])
train( (CvSVM)arg1, (Mat)_train_data, (Mat)_responses [, (Mat)_var_idx=Mat() [, (Mat)_sample_idx=Mat() [, (CvSVMParams)_params=<pyopencv.ml_ext.CvSVMParams object at 0x022088C8>]]]) -> bool :
C++ signature :
bool train(CvSVM {lvalue},cv::Mat,cv::Mat [,cv::Mat=Mat() [,cv::Mat=Mat() [,CvSVMParams=<pyopencv.ml_ext.CvSVMParams object at 0x022088C8>]]])
train( (CvSVM)arg1, (Mat)_train_data, (Mat)_responses [, (Mat)_var_idx=Mat() [, (Mat)_sample_idx=Mat() [, (CvSVMParams)_params=<pyopencv.ml_ext.CvSVMParams object at 0x022088C8>]]]) -> bool :
C++ signature :
bool train(CvSVM_wrapper {lvalue},cv::Mat,cv::Mat [,cv::Mat=Mat() [,cv::Mat=Mat() [,CvSVMParams=<pyopencv.ml_ext.CvSVMParams object at 0x022088C8>]]])
|
train_auto( (CvSVM)inst, (Mat)_train_data, (Mat)_responses, (Mat)_var_idx, (Mat)_sample_idx, (CvSVMParams)_params [, (object)k_fold=10 [, (CvParamGrid)C_grid=CvParamGrid(min_val=0.10000000000000001, max_val=500.0, step=5.0) [, (CvParamGrid)gamma_grid=CvParamGrid(min_val=1.0000000000000001e-05, max_val=0.59999999999999998, step=15.0) [, (CvParamGrid)p_grid=CvParamGrid(min_val=0.01, max_val=100.0, step=7.0) [, (CvParamGrid)nu_grid=CvParamGrid(min_val=0.01, max_val=0.20000000000000001, step=3.0) [, (CvParamGrid)coef_grid=CvParamGrid(min_val=0.10000000000000001, max_val=300.0, step=14.0) [, (CvParamGrid)degree_grid=CvParamGrid(min_val=0.01, max_val=4.0, step=7.0)]]]]]]]) -> object :
Argument '_train_data':
C++ type: ::CvMat const *
Python type: Mat
Argument '_responses':
C++ type: ::CvMat const *
Python type: Mat
Argument '_var_idx':
C++ type: ::CvMat const *
Python type: Mat
Argument '_sample_idx':
C++ type: ::CvMat const *
Python type: Mat
C++ signature :
boost::python::api::object train_auto(CvSVM {lvalue},cv::Mat {lvalue},cv::Mat {lvalue},cv::Mat {lvalue},cv::Mat {lvalue},CvSVMParams [,int=10 [,CvParamGrid=CvParamGrid(min_val=0.10000000000000001, max_val=500.0, step=5.0) [,CvParamGrid=CvParamGrid(min_val=1.0000000000000001e-05, max_val=0.59999999999999998, step=15.0) [,CvParamGrid=CvParamGrid(min_val=0.01, max_val=100.0, step=7.0) [,CvParamGrid=CvParamGrid(min_val=0.01, max_val=0.20000000000000001, step=3.0) [,CvParamGrid=CvParamGrid(min_val=0.10000000000000001, max_val=300.0, step=14.0) [,CvParamGrid=CvParamGrid(min_val=0.01, max_val=4.0, step=7.0)]]]]]]])
train_auto( (CvSVM)arg1, (Mat)_train_data, (Mat)_responses, (Mat)_var_idx, (Mat)_sample_idx, (CvSVMParams)_params [, (object)k_fold=10 [, (CvParamGrid)C_grid=CvParamGrid(min_val=0.10000000000000001, max_val=500.0, step=5.0) [, (CvParamGrid)gamma_grid=CvParamGrid(min_val=1.0000000000000001e-05, max_val=0.59999999999999998, step=15.0) [, (CvParamGrid)p_grid=CvParamGrid(min_val=0.01, max_val=100.0, step=7.0) [, (CvParamGrid)nu_grid=CvParamGrid(min_val=0.01, max_val=0.20000000000000001, step=3.0) [, (CvParamGrid)coef_grid=CvParamGrid(min_val=0.10000000000000001, max_val=300.0, step=14.0) [, (CvParamGrid)degree_grid=CvParamGrid(min_val=0.01, max_val=4.0, step=7.0)]]]]]]]) -> bool :
C++ signature :
bool train_auto(CvSVM {lvalue},cv::Mat,cv::Mat,cv::Mat,cv::Mat,CvSVMParams [,int=10 [,CvParamGrid=CvParamGrid(min_val=0.10000000000000001, max_val=500.0, step=5.0) [,CvParamGrid=CvParamGrid(min_val=1.0000000000000001e-05, max_val=0.59999999999999998, step=15.0) [,CvParamGrid=CvParamGrid(min_val=0.01, max_val=100.0, step=7.0) [,CvParamGrid=CvParamGrid(min_val=0.01, max_val=0.20000000000000001, step=3.0) [,CvParamGrid=CvParamGrid(min_val=0.10000000000000001, max_val=300.0, step=14.0) [,CvParamGrid=CvParamGrid(min_val=0.01, max_val=4.0, step=7.0)]]]]]]])
train_auto( (CvSVM)arg1, (Mat)_train_data, (Mat)_responses, (Mat)_var_idx, (Mat)_sample_idx, (CvSVMParams)_params [, (object)k_fold=10 [, (CvParamGrid)C_grid=CvParamGrid(min_val=0.10000000000000001, max_val=500.0, step=5.0) [, (CvParamGrid)gamma_grid=CvParamGrid(min_val=1.0000000000000001e-05, max_val=0.59999999999999998, step=15.0) [, (CvParamGrid)p_grid=CvParamGrid(min_val=0.01, max_val=100.0, step=7.0) [, (CvParamGrid)nu_grid=CvParamGrid(min_val=0.01, max_val=0.20000000000000001, step=3.0) [, (CvParamGrid)coef_grid=CvParamGrid(min_val=0.10000000000000001, max_val=300.0, step=14.0) [, (CvParamGrid)degree_grid=CvParamGrid(min_val=0.01, max_val=4.0, step=7.0)]]]]]]]) -> bool :
C++ signature :
bool train_auto(CvSVM_wrapper {lvalue},cv::Mat,cv::Mat,cv::Mat,cv::Mat,CvSVMParams [,int=10 [,CvParamGrid=CvParamGrid(min_val=0.10000000000000001, max_val=500.0, step=5.0) [,CvParamGrid=CvParamGrid(min_val=1.0000000000000001e-05, max_val=0.59999999999999998, step=15.0) [,CvParamGrid=CvParamGrid(min_val=0.01, max_val=100.0, step=7.0) [,CvParamGrid=CvParamGrid(min_val=0.01, max_val=0.20000000000000001, step=3.0) [,CvParamGrid=CvParamGrid(min_val=0.10000000000000001, max_val=300.0, step=14.0) [,CvParamGrid=CvParamGrid(min_val=0.01, max_val=4.0, step=7.0)]]]]]]])
|
write( (CvSVM)inst, (FileStorage)storage, (str)name) -> None :
Argument 'storage':
C++ type: ::CvFileStorage *
Python type: FileStorage
C++ signature :
void write(CvSVM,cv::FileStorage {lvalue},char const*)
|
|
|||
decision_func
|
this
|
| Home | Trees | Indices | Help |
|
|---|
| Generated by Epydoc 3.0.1 on Sat Sep 25 18:31:10 2010 | http://epydoc.sourceforge.net |