Home | Trees | Indices | Help |
|
---|
|
object --+ | ??.instance --+ | CvStatModel --+ | CvSVM
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
Inherited from Inherited from Inherited from |
|
|||
|
|
|||
C = 0
|
|||
COEF = 4
|
|||
C_SVC = 100
|
|||
DEGREE = 5
|
|||
EPS_SVR = 103
|
|||
GAMMA = 1
|
|||
LINEAR = 0
|
|||
NU = 3
|
|||
NU_SVC = 101
|
|||
NU_SVR = 104
|
|||
ONE_CLASS = 102
|
|||
P = 2
|
|||
POLY = 1
|
|||
RBF = 2
|
|||
SIGMOID = 3
|
|||
__instance_size__ = 144
|
|
|||
decision_func | |||
this | |||
Inherited from |
|
__init__( (object)arg1) -> None : C++ signature : void __init__(_object*) __init__( (object)arg1, (Mat)_train_data, (Mat)_responses [, (Mat)_var_idx=Mat() [, (Mat)_sample_idx=Mat() [, (CvSVMParams)_params=<pyopencv.ml_ext.CvSVMParams object at 0x02208990>]]]) -> None : C++ signature : void __init__(_object*,cv::Mat,cv::Mat [,cv::Mat=Mat() [,cv::Mat=Mat() [,CvSVMParams=<pyopencv.ml_ext.CvSVMParams object at 0x02208990>]]])
|
clear( (CvSVM)arg1) -> None : C++ signature : void clear(CvSVM {lvalue}) clear( (CvSVM)arg1) -> None : C++ signature : void clear(CvSVM_wrapper {lvalue})
|
get_default_grid( (object)param_id) -> CvParamGrid : C++ signature : CvParamGrid get_default_grid(int) |
get_params( (CvSVM)arg1) -> CvSVMParams : C++ signature : CvSVMParams get_params(CvSVM {lvalue}) get_params( (CvSVM)arg1) -> CvSVMParams : C++ signature : CvSVMParams get_params(CvSVM_wrapper {lvalue}) |
get_support_vector( (object)self, (object)i) -> object : C++ signature : sdcpp::ndarray get_support_vector(boost::python::api::object,int) |
get_support_vector_count( (CvSVM)arg1) -> int : C++ signature : int get_support_vector_count(CvSVM {lvalue}) get_support_vector_count( (CvSVM)arg1) -> int : C++ signature : int get_support_vector_count(CvSVM_wrapper {lvalue}) |
get_var_count( (CvSVM)arg1) -> int : C++ signature : int get_var_count(CvSVM {lvalue}) |
load( (CvSVM)arg1, (str)filename [, (str)name=None]) -> None : C++ signature : void load(CvSVM {lvalue},char const* [,char const*=None]) load( (CvSVM)arg1, (str)filename [, (str)name=None]) -> None : C++ signature : void load(CvSVM_wrapper {lvalue},char const* [,char const*=None])
|
predict( (CvSVM)inst, (Mat)_sample [, (bool)returnDFVal=False]) -> object : Argument '_sample': C++ type: ::CvMat const * Python type: Mat C++ signature : boost::python::api::object predict(CvSVM,cv::Mat {lvalue} [,bool=False]) predict( (CvSVM)arg1, (Mat)_sample [, (bool)returnDFVal=False]) -> float : C++ signature : float predict(CvSVM {lvalue},cv::Mat [,bool=False]) predict( (CvSVM)arg1, (Mat)_sample [, (bool)returnDFVal=False]) -> float : C++ signature : float predict(CvSVM_wrapper {lvalue},cv::Mat [,bool=False]) |
read( (CvSVM)inst, (FileStorage)storage, (FileNode)node) -> None : Argument 'storage': C++ type: ::CvFileStorage * Python type: FileStorage Argument 'node': C++ type: ::CvFileNode * Python type: FileNode C++ signature : void read(CvSVM {lvalue},cv::FileStorage {lvalue},cv::FileNode {lvalue})
|
save( (CvSVM)arg1, (str)filename [, (str)name=None]) -> None : C++ signature : void save(CvSVM {lvalue},char const* [,char const*=None]) save( (CvSVM)arg1, (str)filename [, (str)name=None]) -> None : C++ signature : void save(CvSVM_wrapper {lvalue},char const* [,char const*=None])
|
train( (CvSVM)inst, (Mat)_train_data, (Mat)_responses [, (Mat)_var_idx=Mat() [, (Mat)_sample_idx=Mat() [, (CvSVMParams)_params=<pyopencv.ml_ext.CvSVMParams object at 0x02208800>]]]) -> object : Argument '_train_data': C++ type: ::CvMat const * Python type: Mat Argument '_responses': C++ type: ::CvMat const * Python type: Mat Argument '_var_idx': C++ type: ::CvMat const * Python type: Mat Argument '_sample_idx': C++ type: ::CvMat const * Python type: Mat C++ signature : boost::python::api::object train(CvSVM {lvalue},cv::Mat {lvalue},cv::Mat {lvalue} [,cv::Mat=Mat() [,cv::Mat=Mat() [,CvSVMParams=<pyopencv.ml_ext.CvSVMParams object at 0x02208800>]]]) train( (CvSVM)arg1, (Mat)_train_data, (Mat)_responses [, (Mat)_var_idx=Mat() [, (Mat)_sample_idx=Mat() [, (CvSVMParams)_params=<pyopencv.ml_ext.CvSVMParams object at 0x022088C8>]]]) -> bool : C++ signature : bool train(CvSVM {lvalue},cv::Mat,cv::Mat [,cv::Mat=Mat() [,cv::Mat=Mat() [,CvSVMParams=<pyopencv.ml_ext.CvSVMParams object at 0x022088C8>]]]) train( (CvSVM)arg1, (Mat)_train_data, (Mat)_responses [, (Mat)_var_idx=Mat() [, (Mat)_sample_idx=Mat() [, (CvSVMParams)_params=<pyopencv.ml_ext.CvSVMParams object at 0x022088C8>]]]) -> bool : C++ signature : bool train(CvSVM_wrapper {lvalue},cv::Mat,cv::Mat [,cv::Mat=Mat() [,cv::Mat=Mat() [,CvSVMParams=<pyopencv.ml_ext.CvSVMParams object at 0x022088C8>]]]) |
train_auto( (CvSVM)inst, (Mat)_train_data, (Mat)_responses, (Mat)_var_idx, (Mat)_sample_idx, (CvSVMParams)_params [, (object)k_fold=10 [, (CvParamGrid)C_grid=CvParamGrid(min_val=0.10000000000000001, max_val=500.0, step=5.0) [, (CvParamGrid)gamma_grid=CvParamGrid(min_val=1.0000000000000001e-05, max_val=0.59999999999999998, step=15.0) [, (CvParamGrid)p_grid=CvParamGrid(min_val=0.01, max_val=100.0, step=7.0) [, (CvParamGrid)nu_grid=CvParamGrid(min_val=0.01, max_val=0.20000000000000001, step=3.0) [, (CvParamGrid)coef_grid=CvParamGrid(min_val=0.10000000000000001, max_val=300.0, step=14.0) [, (CvParamGrid)degree_grid=CvParamGrid(min_val=0.01, max_val=4.0, step=7.0)]]]]]]]) -> object : Argument '_train_data': C++ type: ::CvMat const * Python type: Mat Argument '_responses': C++ type: ::CvMat const * Python type: Mat Argument '_var_idx': C++ type: ::CvMat const * Python type: Mat Argument '_sample_idx': C++ type: ::CvMat const * Python type: Mat C++ signature : boost::python::api::object train_auto(CvSVM {lvalue},cv::Mat {lvalue},cv::Mat {lvalue},cv::Mat {lvalue},cv::Mat {lvalue},CvSVMParams [,int=10 [,CvParamGrid=CvParamGrid(min_val=0.10000000000000001, max_val=500.0, step=5.0) [,CvParamGrid=CvParamGrid(min_val=1.0000000000000001e-05, max_val=0.59999999999999998, step=15.0) [,CvParamGrid=CvParamGrid(min_val=0.01, max_val=100.0, step=7.0) [,CvParamGrid=CvParamGrid(min_val=0.01, max_val=0.20000000000000001, step=3.0) [,CvParamGrid=CvParamGrid(min_val=0.10000000000000001, max_val=300.0, step=14.0) [,CvParamGrid=CvParamGrid(min_val=0.01, max_val=4.0, step=7.0)]]]]]]]) train_auto( (CvSVM)arg1, (Mat)_train_data, (Mat)_responses, (Mat)_var_idx, (Mat)_sample_idx, (CvSVMParams)_params [, (object)k_fold=10 [, (CvParamGrid)C_grid=CvParamGrid(min_val=0.10000000000000001, max_val=500.0, step=5.0) [, (CvParamGrid)gamma_grid=CvParamGrid(min_val=1.0000000000000001e-05, max_val=0.59999999999999998, step=15.0) [, (CvParamGrid)p_grid=CvParamGrid(min_val=0.01, max_val=100.0, step=7.0) [, (CvParamGrid)nu_grid=CvParamGrid(min_val=0.01, max_val=0.20000000000000001, step=3.0) [, (CvParamGrid)coef_grid=CvParamGrid(min_val=0.10000000000000001, max_val=300.0, step=14.0) [, (CvParamGrid)degree_grid=CvParamGrid(min_val=0.01, max_val=4.0, step=7.0)]]]]]]]) -> bool : C++ signature : bool train_auto(CvSVM {lvalue},cv::Mat,cv::Mat,cv::Mat,cv::Mat,CvSVMParams [,int=10 [,CvParamGrid=CvParamGrid(min_val=0.10000000000000001, max_val=500.0, step=5.0) [,CvParamGrid=CvParamGrid(min_val=1.0000000000000001e-05, max_val=0.59999999999999998, step=15.0) [,CvParamGrid=CvParamGrid(min_val=0.01, max_val=100.0, step=7.0) [,CvParamGrid=CvParamGrid(min_val=0.01, max_val=0.20000000000000001, step=3.0) [,CvParamGrid=CvParamGrid(min_val=0.10000000000000001, max_val=300.0, step=14.0) [,CvParamGrid=CvParamGrid(min_val=0.01, max_val=4.0, step=7.0)]]]]]]]) train_auto( (CvSVM)arg1, (Mat)_train_data, (Mat)_responses, (Mat)_var_idx, (Mat)_sample_idx, (CvSVMParams)_params [, (object)k_fold=10 [, (CvParamGrid)C_grid=CvParamGrid(min_val=0.10000000000000001, max_val=500.0, step=5.0) [, (CvParamGrid)gamma_grid=CvParamGrid(min_val=1.0000000000000001e-05, max_val=0.59999999999999998, step=15.0) [, (CvParamGrid)p_grid=CvParamGrid(min_val=0.01, max_val=100.0, step=7.0) [, (CvParamGrid)nu_grid=CvParamGrid(min_val=0.01, max_val=0.20000000000000001, step=3.0) [, (CvParamGrid)coef_grid=CvParamGrid(min_val=0.10000000000000001, max_val=300.0, step=14.0) [, (CvParamGrid)degree_grid=CvParamGrid(min_val=0.01, max_val=4.0, step=7.0)]]]]]]]) -> bool : C++ signature : bool train_auto(CvSVM_wrapper {lvalue},cv::Mat,cv::Mat,cv::Mat,cv::Mat,CvSVMParams [,int=10 [,CvParamGrid=CvParamGrid(min_val=0.10000000000000001, max_val=500.0, step=5.0) [,CvParamGrid=CvParamGrid(min_val=1.0000000000000001e-05, max_val=0.59999999999999998, step=15.0) [,CvParamGrid=CvParamGrid(min_val=0.01, max_val=100.0, step=7.0) [,CvParamGrid=CvParamGrid(min_val=0.01, max_val=0.20000000000000001, step=3.0) [,CvParamGrid=CvParamGrid(min_val=0.10000000000000001, max_val=300.0, step=14.0) [,CvParamGrid=CvParamGrid(min_val=0.01, max_val=4.0, step=7.0)]]]]]]]) |
write( (CvSVM)inst, (FileStorage)storage, (str)name) -> None : Argument 'storage': C++ type: ::CvFileStorage * Python type: FileStorage C++ signature : void write(CvSVM,cv::FileStorage {lvalue},char const*)
|
|
decision_func
|
this
|
Home | Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Sat Sep 25 18:31:10 2010 | http://epydoc.sourceforge.net |