Package pyopencv :: Module ml_ext :: Class CvDTree
[hide private]
[frames] | no frames]

Class CvDTree

 object --+        
          |        
??.instance --+    
              |    
    CvStatModel --+
                  |
                 CvDTree
Known Subclasses:

Instance Methods [hide private]
 
__init__(...)
__init__( (object)arg1) -> None :
 
calc_error(...)
calc_error( (CvDTree)arg1, (CvMLData)_data, (object)type [, (vector_float32)resp=None]) -> float :
 
clear(...)
clear( (CvDTree)arg1) -> None :
 
get_data(...)
get_data( (CvDTree)arg1) -> CvDTreeTrainData :
 
get_pruned_tree_idx(...)
get_pruned_tree_idx( (CvDTree)arg1) -> int :
 
get_root(...)
get_root( (CvDTree)arg1) -> object :
 
get_var_importance(...)
get_var_importance( (CvDTree)arg1) -> CvMat :
 
load(...)
load( (CvDTree)arg1, (str)filename [, (str)name=None]) -> None :
 
predict(...)
predict( (CvDTree)inst, (Mat)_sample [, (Mat)_missing_data_mask=Mat() [, (bool)preprocessed_input=False]]) -> object :
 
read_cddeea9f785886a2157e6dbd38d882a3(...)
read_cddeea9f785886a2157e6dbd38d882a3( (CvDTree)inst, (FileStorage)fs, (FileNode)node) -> None :
 
read_ea82e003cd38c548aefac78eb636ff45(...)
read_ea82e003cd38c548aefac78eb636ff45( (CvDTree)inst, (FileStorage)fs, (FileNode)node, (CvDTreeTrainData)data) -> None :
 
save(...)
save( (CvDTree)arg1, (str)filename [, (str)name=None]) -> None :
 
train(...)
train( (CvDTree)inst, (Mat)_train_data, (object)_tflag, (Mat)_responses [, (Mat)_var_idx=Mat() [, (Mat)_sample_idx=Mat() [, (Mat)_var_type=Mat() [, (Mat)_missing_mask=Mat() [, (CvDTreeParams)params=<pyopencv.ml_ext.CvDTreeParams object at 0x021E2210>]]]]]) -> object :
 
write_d1e064f966d50e01902f80ef0f045741(...)
write_d1e064f966d50e01902f80ef0f045741( (CvDTree)inst, (FileStorage)fs) -> None :
 
write_d5b05f94ebb65d268cbd4756fe0d6221(...)
write_d5b05f94ebb65d268cbd4756fe0d6221( (CvDTree)inst, (FileStorage)fs, (str)name) -> None :

Inherited from CvStatModel: __reduce__, read, write

Inherited from unreachable.instance: __new__

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __reduce_ex__, __repr__, __setattr__, __sizeof__, __str__, __subclasshook__

Class Variables [hide private]
  __instance_size__ = 36
Properties [hide private]
  pruned_tree_idx
  this

Inherited from object: __class__

Method Details [hide private]

__init__(...)
(Constructor)

 

__init__( (object)arg1) -> None :

    C++ signature :
        void __init__(_object*)

Overrides: object.__init__

calc_error(...)

 

calc_error( (CvDTree)arg1, (CvMLData)_data, (object)type [, (vector_float32)resp=None]) -> float :

    C++ signature :
        float calc_error(CvDTree {lvalue},CvMLData*,int [,std::vector<float, std::allocator<float> >*=None])

calc_error( (CvDTree)arg1, (CvMLData)_data, (object)type [, (vector_float32)resp=None]) -> float :

    C++ signature :
        float calc_error(CvDTree_wrapper {lvalue},CvMLData*,int [,std::vector<float, std::allocator<float> >*=None])

clear(...)

 

clear( (CvDTree)arg1) -> None :

    C++ signature :
        void clear(CvDTree {lvalue})

clear( (CvDTree)arg1) -> None :

    C++ signature :
        void clear(CvDTree_wrapper {lvalue})

Overrides: CvStatModel.clear

get_data(...)

 

get_data( (CvDTree)arg1) -> CvDTreeTrainData :

    C++ signature :
        CvDTreeTrainData* get_data(CvDTree {lvalue})

get_pruned_tree_idx(...)

 

get_pruned_tree_idx( (CvDTree)arg1) -> int :

    C++ signature :
        int get_pruned_tree_idx(CvDTree {lvalue})

get_root(...)

 

get_root( (CvDTree)arg1) -> object :

    C++ signature :
        CvDTreeNode const* get_root(CvDTree {lvalue})

get_var_importance(...)

 

get_var_importance( (CvDTree)arg1) -> CvMat :

    C++ signature :
        CvMat const* get_var_importance(CvDTree {lvalue})

get_var_importance( (CvDTree)arg1) -> CvMat :

    C++ signature :
        CvMat const* get_var_importance(CvDTree_wrapper {lvalue})

load(...)

 

load( (CvDTree)arg1, (str)filename [, (str)name=None]) -> None :

    C++ signature :
        void load(CvDTree {lvalue},char const* [,char const*=None])

load( (CvDTree)arg1, (str)filename [, (str)name=None]) -> None :

    C++ signature :
        void load(CvDTree_wrapper {lvalue},char const* [,char const*=None])

Overrides: CvStatModel.load

predict(...)

 

predict( (CvDTree)inst, (Mat)_sample [, (Mat)_missing_data_mask=Mat() [, (bool)preprocessed_input=False]]) -> object :
    
    Argument '_sample':
        C++ type: ::CvMat const *
        Python type: Mat
    Argument '_missing_data_mask':
        C++ type: ::CvMat const *
        Python type: Mat

    C++ signature :
        boost::python::api::object predict(CvDTree,cv::Mat {lvalue} [,cv::Mat=Mat() [,bool=False]])

predict( (CvDTree)arg1, (Mat)_sample [, (Mat)_missing_data_mask=Mat() [, (bool)preprocessed_input=False]]) -> object :

    C++ signature :
        CvDTreeNode* predict(CvDTree {lvalue},cv::Mat [,cv::Mat=Mat() [,bool=False]])

predict( (CvDTree)arg1, (Mat)_sample [, (Mat)_missing_data_mask=Mat() [, (bool)preprocessed_input=False]]) -> object :

    C++ signature :
        CvDTreeNode* predict(CvDTree_wrapper {lvalue},cv::Mat [,cv::Mat=Mat() [,bool=False]])

read_cddeea9f785886a2157e6dbd38d882a3(...)

 

read_cddeea9f785886a2157e6dbd38d882a3( (CvDTree)inst, (FileStorage)fs, (FileNode)node) -> None :
    
    Wrapped function:
        read
    Argument 'fs':
        C++ type: ::CvFileStorage *
        Python type: FileStorage
    Argument 'node':
        C++ type: ::CvFileNode *
        Python type: FileNode

    C++ signature :
        void read_cddeea9f785886a2157e6dbd38d882a3(CvDTree {lvalue},cv::FileStorage {lvalue},cv::FileNode {lvalue})

read_ea82e003cd38c548aefac78eb636ff45(...)

 

read_ea82e003cd38c548aefac78eb636ff45( (CvDTree)inst, (FileStorage)fs, (FileNode)node, (CvDTreeTrainData)data) -> None :
    
    Wrapped function:
        read
    Argument 'fs':
        C++ type: ::CvFileStorage *
        Python type: FileStorage
    Argument 'node':
        C++ type: ::CvFileNode *
        Python type: FileNode

    C++ signature :
        void read_ea82e003cd38c548aefac78eb636ff45(CvDTree {lvalue},cv::FileStorage {lvalue},cv::FileNode {lvalue},CvDTreeTrainData*)

save(...)

 

save( (CvDTree)arg1, (str)filename [, (str)name=None]) -> None :

    C++ signature :
        void save(CvDTree {lvalue},char const* [,char const*=None])

save( (CvDTree)arg1, (str)filename [, (str)name=None]) -> None :

    C++ signature :
        void save(CvDTree_wrapper {lvalue},char const* [,char const*=None])

Overrides: CvStatModel.save

train(...)

 

train( (CvDTree)inst, (Mat)_train_data, (object)_tflag, (Mat)_responses [, (Mat)_var_idx=Mat() [, (Mat)_sample_idx=Mat() [, (Mat)_var_type=Mat() [, (Mat)_missing_mask=Mat() [, (CvDTreeParams)params=<pyopencv.ml_ext.CvDTreeParams object at 0x021E2210>]]]]]) -> object :
    
    Argument '_train_data':
        C++ type: ::CvMat const *
        Python type: Mat
    Argument '_responses':
        C++ type: ::CvMat const *
        Python type: Mat
    Argument '_var_idx':
        C++ type: ::CvMat const *
        Python type: Mat
    Argument '_sample_idx':
        C++ type: ::CvMat const *
        Python type: Mat
    Argument '_var_type':
        C++ type: ::CvMat const *
        Python type: Mat
    Argument '_missing_mask':
        C++ type: ::CvMat const *
        Python type: Mat

    C++ signature :
        boost::python::api::object train(CvDTree {lvalue},cv::Mat {lvalue},int,cv::Mat {lvalue} [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,CvDTreeParams=<pyopencv.ml_ext.CvDTreeParams object at 0x021E2210>]]]]])

train( (CvDTree)arg1, (CvMLData)_data [, (CvDTreeParams)_params=<pyopencv.ml_ext.CvDTreeParams object at 0x021E21C0>]) -> bool :

    C++ signature :
        bool train(CvDTree {lvalue},CvMLData* [,CvDTreeParams=<pyopencv.ml_ext.CvDTreeParams object at 0x021E21C0>])

train( (CvDTree)arg1, (CvMLData)_data [, (CvDTreeParams)_params=<pyopencv.ml_ext.CvDTreeParams object at 0x021E21C0>]) -> bool :

    C++ signature :
        bool train(CvDTree_wrapper {lvalue},CvMLData* [,CvDTreeParams=<pyopencv.ml_ext.CvDTreeParams object at 0x021E21C0>])

train( (CvDTree)inst, (CvDTreeTrainData)_train_data, (Mat)_subsample_idx) -> object :
    
    Argument '_subsample_idx':
        C++ type: ::CvMat const *
        Python type: Mat

    C++ signature :
        boost::python::api::object train(CvDTree {lvalue},CvDTreeTrainData*,cv::Mat {lvalue})

train( (CvDTree)arg1, (Mat)_train_data, (object)_tflag, (Mat)_responses [, (Mat)_var_idx=Mat() [, (Mat)_sample_idx=Mat() [, (Mat)_var_type=Mat() [, (Mat)_missing_mask=Mat() [, (CvDTreeParams)params=<pyopencv.ml_ext.CvDTreeParams object at 0x021E2170>]]]]]) -> bool :

    C++ signature :
        bool train(CvDTree {lvalue},cv::Mat,int,cv::Mat [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,CvDTreeParams=<pyopencv.ml_ext.CvDTreeParams object at 0x021E2170>]]]]])

train( (CvDTree)arg1, (Mat)_train_data, (object)_tflag, (Mat)_responses [, (Mat)_var_idx=Mat() [, (Mat)_sample_idx=Mat() [, (Mat)_var_type=Mat() [, (Mat)_missing_mask=Mat() [, (CvDTreeParams)params=<pyopencv.ml_ext.CvDTreeParams object at 0x021E2170>]]]]]) -> bool :

    C++ signature :
        bool train(CvDTree_wrapper {lvalue},cv::Mat,int,cv::Mat [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,CvDTreeParams=<pyopencv.ml_ext.CvDTreeParams object at 0x021E2170>]]]]])

write_d1e064f966d50e01902f80ef0f045741(...)

 

write_d1e064f966d50e01902f80ef0f045741( (CvDTree)inst, (FileStorage)fs) -> None :
    
    Wrapped function:
        write
    Argument 'fs':
        C++ type: ::CvFileStorage *
        Python type: FileStorage

    C++ signature :
        void write_d1e064f966d50e01902f80ef0f045741(CvDTree,cv::FileStorage {lvalue})

write_d5b05f94ebb65d268cbd4756fe0d6221(...)

 

write_d5b05f94ebb65d268cbd4756fe0d6221( (CvDTree)inst, (FileStorage)fs, (str)name) -> None :
    
    Wrapped function:
        write
    Argument 'fs':
        C++ type: ::CvFileStorage *
        Python type: FileStorage

    C++ signature :
        void write_d5b05f94ebb65d268cbd4756fe0d6221(CvDTree,cv::FileStorage {lvalue},char const*)


Property Details [hide private]

pruned_tree_idx

Get Method:
unreachable(...)
Set Method:
unreachable(...)

this

Get Method:
unreachable(...)