| Home | Trees | Indices | Help |
|
|---|
|
|
object --+
|
??.instance --+
|
CvStatModel --+
|
CvDTree
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
Inherited from Inherited from Inherited from |
|||
|
|||
__instance_size__ = 36
|
|||
|
|||
| pruned_tree_idx | |||
| this | |||
|
Inherited from |
|||
|
|||
__init__( (object)arg1) -> None :
C++ signature :
void __init__(_object*)
|
calc_error( (CvDTree)arg1, (CvMLData)_data, (object)type [, (vector_float32)resp=None]) -> float :
C++ signature :
float calc_error(CvDTree {lvalue},CvMLData*,int [,std::vector<float, std::allocator<float> >*=None])
calc_error( (CvDTree)arg1, (CvMLData)_data, (object)type [, (vector_float32)resp=None]) -> float :
C++ signature :
float calc_error(CvDTree_wrapper {lvalue},CvMLData*,int [,std::vector<float, std::allocator<float> >*=None])
|
clear( (CvDTree)arg1) -> None :
C++ signature :
void clear(CvDTree {lvalue})
clear( (CvDTree)arg1) -> None :
C++ signature :
void clear(CvDTree_wrapper {lvalue})
|
get_data( (CvDTree)arg1) -> CvDTreeTrainData :
C++ signature :
CvDTreeTrainData* get_data(CvDTree {lvalue})
|
get_pruned_tree_idx( (CvDTree)arg1) -> int :
C++ signature :
int get_pruned_tree_idx(CvDTree {lvalue})
|
get_root( (CvDTree)arg1) -> object :
C++ signature :
CvDTreeNode const* get_root(CvDTree {lvalue})
|
get_var_importance( (CvDTree)arg1) -> CvMat :
C++ signature :
CvMat const* get_var_importance(CvDTree {lvalue})
get_var_importance( (CvDTree)arg1) -> CvMat :
C++ signature :
CvMat const* get_var_importance(CvDTree_wrapper {lvalue})
|
load( (CvDTree)arg1, (str)filename [, (str)name=None]) -> None :
C++ signature :
void load(CvDTree {lvalue},char const* [,char const*=None])
load( (CvDTree)arg1, (str)filename [, (str)name=None]) -> None :
C++ signature :
void load(CvDTree_wrapper {lvalue},char const* [,char const*=None])
|
predict( (CvDTree)inst, (Mat)_sample [, (Mat)_missing_data_mask=Mat() [, (bool)preprocessed_input=False]]) -> object :
Argument '_sample':
C++ type: ::CvMat const *
Python type: Mat
Argument '_missing_data_mask':
C++ type: ::CvMat const *
Python type: Mat
C++ signature :
boost::python::api::object predict(CvDTree,cv::Mat {lvalue} [,cv::Mat=Mat() [,bool=False]])
predict( (CvDTree)arg1, (Mat)_sample [, (Mat)_missing_data_mask=Mat() [, (bool)preprocessed_input=False]]) -> object :
C++ signature :
CvDTreeNode* predict(CvDTree {lvalue},cv::Mat [,cv::Mat=Mat() [,bool=False]])
predict( (CvDTree)arg1, (Mat)_sample [, (Mat)_missing_data_mask=Mat() [, (bool)preprocessed_input=False]]) -> object :
C++ signature :
CvDTreeNode* predict(CvDTree_wrapper {lvalue},cv::Mat [,cv::Mat=Mat() [,bool=False]])
|
read_cddeea9f785886a2157e6dbd38d882a3( (CvDTree)inst, (FileStorage)fs, (FileNode)node) -> None :
Wrapped function:
read
Argument 'fs':
C++ type: ::CvFileStorage *
Python type: FileStorage
Argument 'node':
C++ type: ::CvFileNode *
Python type: FileNode
C++ signature :
void read_cddeea9f785886a2157e6dbd38d882a3(CvDTree {lvalue},cv::FileStorage {lvalue},cv::FileNode {lvalue})
|
read_ea82e003cd38c548aefac78eb636ff45( (CvDTree)inst, (FileStorage)fs, (FileNode)node, (CvDTreeTrainData)data) -> None :
Wrapped function:
read
Argument 'fs':
C++ type: ::CvFileStorage *
Python type: FileStorage
Argument 'node':
C++ type: ::CvFileNode *
Python type: FileNode
C++ signature :
void read_ea82e003cd38c548aefac78eb636ff45(CvDTree {lvalue},cv::FileStorage {lvalue},cv::FileNode {lvalue},CvDTreeTrainData*)
|
save( (CvDTree)arg1, (str)filename [, (str)name=None]) -> None :
C++ signature :
void save(CvDTree {lvalue},char const* [,char const*=None])
save( (CvDTree)arg1, (str)filename [, (str)name=None]) -> None :
C++ signature :
void save(CvDTree_wrapper {lvalue},char const* [,char const*=None])
|
train( (CvDTree)inst, (Mat)_train_data, (object)_tflag, (Mat)_responses [, (Mat)_var_idx=Mat() [, (Mat)_sample_idx=Mat() [, (Mat)_var_type=Mat() [, (Mat)_missing_mask=Mat() [, (CvDTreeParams)params=<pyopencv.ml_ext.CvDTreeParams object at 0x021E2210>]]]]]) -> object :
Argument '_train_data':
C++ type: ::CvMat const *
Python type: Mat
Argument '_responses':
C++ type: ::CvMat const *
Python type: Mat
Argument '_var_idx':
C++ type: ::CvMat const *
Python type: Mat
Argument '_sample_idx':
C++ type: ::CvMat const *
Python type: Mat
Argument '_var_type':
C++ type: ::CvMat const *
Python type: Mat
Argument '_missing_mask':
C++ type: ::CvMat const *
Python type: Mat
C++ signature :
boost::python::api::object train(CvDTree {lvalue},cv::Mat {lvalue},int,cv::Mat {lvalue} [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,CvDTreeParams=<pyopencv.ml_ext.CvDTreeParams object at 0x021E2210>]]]]])
train( (CvDTree)arg1, (CvMLData)_data [, (CvDTreeParams)_params=<pyopencv.ml_ext.CvDTreeParams object at 0x021E21C0>]) -> bool :
C++ signature :
bool train(CvDTree {lvalue},CvMLData* [,CvDTreeParams=<pyopencv.ml_ext.CvDTreeParams object at 0x021E21C0>])
train( (CvDTree)arg1, (CvMLData)_data [, (CvDTreeParams)_params=<pyopencv.ml_ext.CvDTreeParams object at 0x021E21C0>]) -> bool :
C++ signature :
bool train(CvDTree_wrapper {lvalue},CvMLData* [,CvDTreeParams=<pyopencv.ml_ext.CvDTreeParams object at 0x021E21C0>])
train( (CvDTree)inst, (CvDTreeTrainData)_train_data, (Mat)_subsample_idx) -> object :
Argument '_subsample_idx':
C++ type: ::CvMat const *
Python type: Mat
C++ signature :
boost::python::api::object train(CvDTree {lvalue},CvDTreeTrainData*,cv::Mat {lvalue})
train( (CvDTree)arg1, (Mat)_train_data, (object)_tflag, (Mat)_responses [, (Mat)_var_idx=Mat() [, (Mat)_sample_idx=Mat() [, (Mat)_var_type=Mat() [, (Mat)_missing_mask=Mat() [, (CvDTreeParams)params=<pyopencv.ml_ext.CvDTreeParams object at 0x021E2170>]]]]]) -> bool :
C++ signature :
bool train(CvDTree {lvalue},cv::Mat,int,cv::Mat [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,CvDTreeParams=<pyopencv.ml_ext.CvDTreeParams object at 0x021E2170>]]]]])
train( (CvDTree)arg1, (Mat)_train_data, (object)_tflag, (Mat)_responses [, (Mat)_var_idx=Mat() [, (Mat)_sample_idx=Mat() [, (Mat)_var_type=Mat() [, (Mat)_missing_mask=Mat() [, (CvDTreeParams)params=<pyopencv.ml_ext.CvDTreeParams object at 0x021E2170>]]]]]) -> bool :
C++ signature :
bool train(CvDTree_wrapper {lvalue},cv::Mat,int,cv::Mat [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,cv::Mat=Mat() [,CvDTreeParams=<pyopencv.ml_ext.CvDTreeParams object at 0x021E2170>]]]]])
|
write_d1e064f966d50e01902f80ef0f045741( (CvDTree)inst, (FileStorage)fs) -> None :
Wrapped function:
write
Argument 'fs':
C++ type: ::CvFileStorage *
Python type: FileStorage
C++ signature :
void write_d1e064f966d50e01902f80ef0f045741(CvDTree,cv::FileStorage {lvalue})
|
write_d5b05f94ebb65d268cbd4756fe0d6221( (CvDTree)inst, (FileStorage)fs, (str)name) -> None :
Wrapped function:
write
Argument 'fs':
C++ type: ::CvFileStorage *
Python type: FileStorage
C++ signature :
void write_d5b05f94ebb65d268cbd4756fe0d6221(CvDTree,cv::FileStorage {lvalue},char const*)
|
|
|||
pruned_tree_idx
|
this
|
| Home | Trees | Indices | Help |
|
|---|
| Generated by Epydoc 3.0.1 on Sat Sep 25 18:31:10 2010 | http://epydoc.sourceforge.net |