| Home | Trees | Indices | Help |
|---|
|
|
object --+
|
??.instance --+
|
CvStatModel --+
|
CvANN_MLP
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
Inherited from Inherited from Inherited from |
|||
|
|||
GAUSSIAN = 2
|
|||
IDENTITY = 0
|
|||
NO_INPUT_SCALE = 2
|
|||
NO_OUTPUT_SCALE = 4
|
|||
SIGMOID_SYM = 1
|
|||
UPDATE_WEIGHTS = 1
|
|||
__instance_size__ = 192
|
|||
|
|||
| this | |||
|
Inherited from |
|||
|
|||
__init__( (object)arg1) -> None :
C++ signature :
void __init__(_object*)
__init__( (object)arg1, (Mat)_layer_sizes [, (object)_activ_func=1 [, (object)_f_param1=0 [, (object)_f_param2=0]]]) -> None :
C++ signature :
void __init__(_object*,cv::Mat [,int=1 [,double=0 [,double=0]]])
|
clear( (CvANN_MLP)arg1) -> None :
C++ signature :
void clear(CvANN_MLP {lvalue})
clear( (CvANN_MLP)arg1) -> None :
C++ signature :
void clear(CvANN_MLP_wrapper {lvalue})
|
create( (CvANN_MLP)arg1, (Mat)_layer_sizes [, (object)_activ_func=1 [, (object)_f_param1=0 [, (object)_f_param2=0]]]) -> None :
C++ signature :
void create(CvANN_MLP {lvalue},cv::Mat [,int=1 [,double=0 [,double=0]]])
create( (CvANN_MLP)arg1, (Mat)_layer_sizes [, (object)_activ_func=1 [, (object)_f_param1=0 [, (object)_f_param2=0]]]) -> None :
C++ signature :
void create(CvANN_MLP_wrapper {lvalue},cv::Mat [,int=1 [,double=0 [,double=0]]])
|
get_layer_count( (CvANN_MLP)arg1) -> int :
C++ signature :
int get_layer_count(CvANN_MLP {lvalue})
|
load( (CvANN_MLP)arg1, (str)filename [, (str)name=None]) -> None :
C++ signature :
void load(CvANN_MLP {lvalue},char const* [,char const*=None])
load( (CvANN_MLP)arg1, (str)filename [, (str)name=None]) -> None :
C++ signature :
void load(CvANN_MLP_wrapper {lvalue},char const* [,char const*=None])
|
predict( (CvANN_MLP)arg1, (Mat)_inputs, (Mat)_outputs) -> float :
C++ signature :
float predict(CvANN_MLP {lvalue},cv::Mat,cv::Mat {lvalue})
predict( (CvANN_MLP)arg1, (Mat)_inputs, (Mat)_outputs) -> float :
C++ signature :
float predict(CvANN_MLP_wrapper {lvalue},cv::Mat,cv::Mat {lvalue})
|
read( (CvANN_MLP)inst, (FileStorage)fs, (FileNode)node) -> None :
Argument 'node':
C/C++ type: ::CvFileNode *.
Python type: FileNode.
Argument 'fs':
C/C++ type: ::CvFileStorage *.
Python type: FileStorage.
C++ signature :
void read(CvANN_MLP {lvalue},cv::FileStorage {lvalue},cv::FileNode {lvalue})
|
save( (CvANN_MLP)arg1, (str)filename [, (str)name=None]) -> None :
C++ signature :
void save(CvANN_MLP {lvalue},char const* [,char const*=None])
save( (CvANN_MLP)arg1, (str)filename [, (str)name=None]) -> None :
C++ signature :
void save(CvANN_MLP_wrapper {lvalue},char const* [,char const*=None])
|
train( (CvANN_MLP)arg1, (Mat)_inputs, (Mat)_outputs, (Mat)_sample_weights [, (Mat)_sample_idx=Mat() [, (CvANN_MLP_TrainParams)_params=<pyopencv.pyopencvext.CvANN_MLP_TrainParams object at 0x020C1B58> [, (object)flags=0]]]) -> int :
C++ signature :
int train(CvANN_MLP {lvalue},cv::Mat,cv::Mat,cv::Mat [,cv::Mat=Mat() [,CvANN_MLP_TrainParams=<pyopencv.pyopencvext.CvANN_MLP_TrainParams object at 0x020C1B58> [,int=0]]])
train( (CvANN_MLP)arg1, (Mat)_inputs, (Mat)_outputs, (Mat)_sample_weights [, (Mat)_sample_idx=Mat() [, (CvANN_MLP_TrainParams)_params=<pyopencv.pyopencvext.CvANN_MLP_TrainParams object at 0x020C1B58> [, (object)flags=0]]]) -> int :
C++ signature :
int train(CvANN_MLP_wrapper {lvalue},cv::Mat,cv::Mat,cv::Mat [,cv::Mat=Mat() [,CvANN_MLP_TrainParams=<pyopencv.pyopencvext.CvANN_MLP_TrainParams object at 0x020C1B58> [,int=0]]])
|
write( (CvANN_MLP)inst, (FileStorage)storage, (str)name) -> None :
Argument 'storage':
C/C++ type: ::CvFileStorage *.
Python type: FileStorage.
C++ signature :
void write(CvANN_MLP,cv::FileStorage {lvalue},char const*)
|
|
|||
this
|
| Home | Trees | Indices | Help |
|---|
| Generated by Epydoc 3.0.1 on Tue Apr 13 18:01:49 2010 | http://epydoc.sourceforge.net |