Package for Gaussian Process Optimization
This package provides optimization functionality
for hyperparameters of covariance functions
pygp.covar given.
Package for Gaussian Process Optimization
This package provides optimization functionality
for hyperparameters of covariance functions
pygp.covar given.
-
pygp.optimize.optimize_base.checkgrad(f, fprime, x, verbose=True, hyper_names=None, tolerance=0.1, *args, **kw_args)
Analytical gradient calculation using a 3-point method
-
pygp.optimize.optimize_base.opt_hyper(gpr, hyperparams, Ifilter=None, maxiter=1000, gradcheck=False, bounds=None, callback=None, gradient_tolerance=1e-08, messages=True, *args, **kw_args)
Optimize hyperparemters of pygp.gp.basic_gp.GP gpr starting from given hyperparameters hyperparams.
Parameters:
- gpr : pygp.gp.basic_gp
- GP regression class
- hyperparams : {‘covar’:logtheta, ...}
- Dictionary filled with starting hyperparameters
for optimization. logtheta are the CF hyperparameters.
- Ifilter : [boolean]
Index vector, indicating which hyperparameters shall
be optimized. For instance:
logtheta = [1,2,3]
Ifilter = [0,1,0]
means that only the second entry (which equals 2 in
this example) of logtheta will be optimized
and the others remain untouched.
- bounds : [[min,max]]
- Array with min and max value that can be attained for any hyperparameter
- maxiter: int
- maximum number of function evaluations
- gradcheck: boolean
- check gradients comparing the analytical gradients to their approximations
** argument passed onto LML**
- priors : [pygp.priors]
- non-default prior, otherwise assume
first index amplitude, last noise, rest:lengthscales
-
pygp.optimize.optimize_base.param_dict_to_list(di, skeys=None)
convert from param dictionary to list
-
pygp.optimize.optimize_base.param_list_to_dict(li, param_struct, skeys)
convert from param dictionary to list
param_struct: structure of parameter array