Bases: pycast.methods.basemethod.BaseForecastingMethod
Implements an exponential smoothing algorithm.
Initializes the ExponentialSmoothing.
Parameters: |
|
---|---|
Raise: | Raises a ValueError when smoothingFactor has an invalid value. |
Returns the intervals for the methods parameter.
Only parameters with defined intervals can be used for optimization!
Returns: | Returns a dictionary containing the parameter intervals, using the parameter
name as key, while the value hast the following format:
[minValue, maxValue, minIntervalClosed, maxIntervalClosed]
|
---|---|
Return type: | dictionary |
Bases: pycast.methods.basemethod.BaseForecastingMethod
Implements the Holt algorithm.
Initializes the HoltMethod.
Parameters: |
|
---|---|
Raise: | Raises a ValueError when smoothingFactor or trendSmoothingFactor has an invalid value. |
Returns the intervals for the methods parameter.
Only parameters with defined intervals can be used for optimization!
Returns: | Returns a dictionary containing the parameter intervals, using the parameter
name as key, while the value hast the following format:
[minValue, maxValue, minIntervalClosed, maxIntervalClosed]
|
---|---|
Return type: | dictionary |
Bases: pycast.methods.basemethod.BaseForecastingMethod
Implements the Holt-Winters algorithm.
Initializes the HoltWintersMethod.
Parameters: |
|
---|
Returns the intervals for the methods parameter.
Only parameters with defined intervals can be used for optimization!
Returns: | Returns a dictionary containing the parameter intervals, using the parameter
name as key, while the value hast the following format:
[minValue, maxValue, minIntervalClosed, maxIntervalClosed]
|
---|---|
Return type: | dictionary |
Calculates A_j. Aj is the average value of x in the jth cycle of your data
Returns: | A_j |
---|---|
Return type: | numeric |
Creates a new TimeSeries containing the smoothed values.
Returns: | TimeSeries object containing the exponentially smoothed TimeSeries, including the forecasted values. |
---|---|
Return type: | TimeSeries |
Note: | Currently the first normalized value is simply chosen as the starting point. |
Computes the initial season smoothing factors.
Returns: | Returns a list of season vectors of length “seasonLength”. |
---|---|
Return type: | list |