Custom smoothing and forecasting methods must either inherit from pycast.methods.BaseMethod or pycast.methods.BaseForecastingMethod and implement the following functions:
- __init__(self, *args, **kwargs)
- execute(self, timeSeries)
- get_parameter_intervals(self)
To implement your custom method, it is recommended to start with the following example:
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
#Copyright (c) 2012-2015 Christian Schwarz
#
#Permission is hereby granted, free of charge, to any person obtaining
#a copy of this software and associated documentation files (the
#"Software"), to deal in the Software without restriction, including
#without limitation the rights to use, copy, modify, merge, publish,
#distribute, sublicense, and/or sell copies of the Software, and to
#permit persons to whom the Software is furnished to do so, subject to
#the following conditions:
#
#The above copyright notice and this permission notice shall be
#included in all copies or substantial portions of the Software.
#
#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
#EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
#MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
#NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
#LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
#OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
#WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
from pycast.methods import BaseMethod
from pycast.common.timeseries import TimeSeries
class CustomSmoothingMethod(BaseMethod):
## Alternative:
### class CustomForecastingMethod(BaseMethod):
"""This is your custom Method"""
def __init__(self, *args, **kwargs):
"""Initializes the BaseMethod.
:param List args: Arguments that are required for initialization.
:param Dictionary hasToBeSorted: Keyword arguments that are required for initialization.
"""
super(BaseMethod, self).__init__(requiredParameters, hasToBeSorted, hasToBeNormalized)
## YOUR CUSTOM CODE HERE
def _get_parameter_intervals(self):
"""Returns the intervals for the methods parameter.
Only parameters with defined intervals can be used for optimization!
:return: Returns a dictionary containing the parameter intervals, using the parameter
name as key, while the value hast the following format:
[minValue, maxValue, minIntervalClosed, maxIntervalClosed]
- minValue
Minimal value for the parameter
- maxValue
Maximal value for the parameter
- minIntervalClosed
:py:const:`True`, if minValue represents a valid value for the parameter.
:py:const:`False` otherwise.
- maxIntervalClosed:
:py:const:`True`, if maxValue represents a valid value for the parameter.
:py:const:`False` otherwise.
:rtype: Dictionary
"""
parameterIntervals = {}
## YOUR METHOD SPECIFIC CODE HERE!
return parameterIntervals
def execute(self, timeSeries):
"""Executes the BaseMethod on a given TimeSeries object.
:param TimeSeries timeSeries: TimeSeries object that fullfills all requirements (normalization, sortOrder).
:return: Returns a TimeSeries object containing the smoothed/forecasted values.
:rtype: TimeSeries
:raise: Raises a :py:exc:`NotImplementedError` if the child class does not overwrite this function.
"""
## YOUR METHOD SPECIFIC CODE HERE!