dMRI: DTI - Diffusion Toolkit, FSL

A pipeline example that uses several interfaces to perform analysis on diffusion weighted images using Diffusion Toolkit tools.

This tutorial is based on the 2010 FSL course and uses data freely available at the FSL website at: http://www.fmrib.ox.ac.uk/fslcourse/fsl_course_data2.tar.gz

More details can be found at http://www.fmrib.ox.ac.uk/fslcourse/lectures/practicals/fdt/index.htm

In order to run this tutorial you need to have Diffusion Toolkit and FSL tools installed and accessible from matlab/command line. Check by calling fslinfo and dtk from the command line.

Tell python where to find the appropriate functions.

import nipype.interfaces.io as nio           # Data i/o
import nipype.interfaces.fsl as fsl          # fsl
import nipype.interfaces.diffusion_toolkit as dtk
import nipype.interfaces.utility as util     # utility
import nipype.pipeline.engine as pe          # pypeline engine
import os                                    # system functions
from nipype.workflows.dmri.fsl.dti import create_eddy_correct_pipeline

Confirm package dependencies are installed. (This is only for the tutorial, rarely would you put this in your own code.)

from nipype.utils.misc import package_check

package_check('numpy', '1.3', 'tutorial1')
package_check('scipy', '0.7', 'tutorial1')
package_check('networkx', '1.0', 'tutorial1')
package_check('IPython', '0.10', 'tutorial1')

Setting up workflows

This is a generic workflow for DTI data analysis using the FSL

Data specific components

The nipype tutorial contains data for two subjects. Subject data is in two subdirectories, dwis1 and dwis2. Each subject directory contains each of the following files: bvec, bval, diffusion weighted data, a set of target masks, a seed file, and a transformation matrix.

Below we set some variables to inform the datasource about the layout of our data. We specify the location of the data, the subject sub-directories and a dictionary that maps each run to a mnemonic (or field) for the run type (dwi or bvals). These fields become the output fields of the datasource node in the pipeline.

Specify the subject directories

subject_list = ['subj1']

Map field names to individual subject runs

info = dict(dwi=[['subject_id', 'data']],
            bvecs=[['subject_id', 'bvecs']],
            bvals=[['subject_id', 'bvals']])

infosource = pe.Node(interface=util.IdentityInterface(fields=['subject_id']),
                     name="infosource")

Here we set up iteration over all the subjects. The following line is a particular example of the flexibility of the system. The datasource attribute iterables tells the pipeline engine that it should repeat the analysis on each of the items in the subject_list. In the current example, the entire first level preprocessing and estimation will be repeated for each subject contained in subject_list.

infosource.iterables = ('subject_id', subject_list)

Now we create a nipype.interfaces.io.DataGrabber object and fill in the information from above about the layout of our data. The nipype.pipeline.engine.Node module wraps the interface object and provides additional housekeeping and pipeline specific functionality.

datasource = pe.Node(interface=nio.DataGrabber(infields=['subject_id'],
                                               outfields=list(info.keys())),
                     name='datasource')

datasource.inputs.template = "%s/%s"

# This needs to point to the fdt folder you can find after extracting
# http://www.fmrib.ox.ac.uk/fslcourse/fsl_course_data2.tar.gz
datasource.inputs.base_directory = os.path.abspath('fsl_course_data/fdt/')

datasource.inputs.field_template = dict(dwi='%s/%s.nii.gz')
datasource.inputs.template_args = info
datasource.inputs.sort_filelist = True

Setup for Diffusion Tensor Computation

Here we will create a generic workflow for DTI computation

computeTensor = pe.Workflow(name='computeTensor')

extract the volume with b=0 (nodif_brain)

fslroi = pe.Node(interface=fsl.ExtractROI(), name='fslroi')
fslroi.inputs.t_min = 0
fslroi.inputs.t_size = 1

create a brain mask from the nodif_brain

bet = pe.Node(interface=fsl.BET(), name='bet')
bet.inputs.mask = True
bet.inputs.frac = 0.34

correct the diffusion weighted images for eddy_currents

eddycorrect = create_eddy_correct_pipeline('eddycorrect')
eddycorrect.inputs.inputnode.ref_num = 0

compute the diffusion tensor in each voxel

dtifit = pe.Node(interface=dtk.DTIRecon(), name='dtifit')

connect all the nodes for this workflow

computeTensor.connect([
    (fslroi, bet, [('roi_file', 'in_file')]),
    (eddycorrect, dtifit, [('outputnode.eddy_corrected', 'DWI')])
])

Setup for Tracktography

Here we will create a workflow to enable deterministic tracktography

tractography = pe.Workflow(name='tractography')

dtk_tracker = pe.Node(interface=dtk.DTITracker(), name="dtk_tracker")
dtk_tracker.inputs.invert_x = True

smooth_trk = pe.Node(interface=dtk.SplineFilter(), name="smooth_trk")
smooth_trk.inputs.step_length = 0.5

connect all the nodes for this workflow

tractography.connect([
    (dtk_tracker, smooth_trk, [('track_file', 'track_file')])
])

Setup data storage area

datasink = pe.Node(interface=nio.DataSink(), name='datasink')
datasink.inputs.base_directory = os.path.abspath('dtiresults')


def getstripdir(subject_id):
    return os.path.join(os.path.abspath('data/workingdir/dwiproc'), '_subject_id_%s' % subject_id)

Setup the pipeline that combines the two workflows: tractography and computeTensor

dwiproc = pe.Workflow(name="dwiproc")
dwiproc.base_dir = os.path.abspath('dtk_dti_tutorial')
dwiproc.connect([
    (infosource, datasource, [('subject_id', 'subject_id')]),
    (datasource, computeTensor, [('dwi', 'fslroi.in_file'),
                                 ('bvals', 'dtifit.bvals'),
                                 ('bvecs', 'dtifit.bvecs'),
                                 ('dwi', 'eddycorrect.inputnode.in_file')]),
    (computeTensor, tractography, [('bet.mask_file', 'dtk_tracker.mask1_file'),
                                   ('dtifit.tensor', 'dtk_tracker.tensor_file')
                                   ])
])

if __name__ == '__main__':
    dwiproc.run()
    dwiproc.write_graph()

Example source code

You can download the full source code of this example. This same script is also included in the Nipype source distribution under the examples directory.