Configuration File

Some of the system wide options of Nipype can be configured using a configuration file. Nipype looks for the file in the local folder under the name nipype.cfg and in ~/.nipype/nipype.cfg (in this order). If an option will not be specified a default value will be assumed. The file is divided into following sections:

Logging

workflow_level
How detailed the logs regarding workflow should be (possible values: INFO and DEBUG; default value: INFO)
filemanip_level
How detailed the logs regarding file operations (for example overwriting warning) should be (possible values: INFO and DEBUG; default value: INFO)
interface_level
How detailed the logs regarding interface execution should be (possible values: INFO and DEBUG; default value: INFO)
log_to_file
Indicates whether logging should also send the output to a file (possible values: true and false; default value: false)
log_directory
Where to store logs. (string, default value: home directory)
log_size
Size of a single log file. (integer, default value: 254000)
log_rotate
How many rotation should the log file make. (integer, default value: 4)

Execution

plugin
This defines which execution plugin to use. (possible values: Linear, MultiProc, SGE, IPython; default value: Linear)
stop_on_first_crash
Should the workflow stop upon first node crashing or try to execute as many nodes as possible? (possible values: true and false; default value: false)
stop_on_first_rerun
Should the workflow stop upon first node trying to recompute (by that we mean rerunning a node that has been run before - this can happen due changed inputs and/or hash_method since the last run). (possible values: true and false; default value: false)
hash_method
Should the input files be checked for changes using their content (slow, but 100% accurate) or just their size and modification date (fast, but potentially prone to errors)? (possible values: content and timestamp; default value: content)
keep_inputs
Ensures that all inputs that are created in the nodes working directory are kept after node execution (possible values: true and false; default value: false)
single_thread_matlab
Should all of the Matlab interfaces (including SPM) use only one thread? This is useful if you are parallelizing your workflow using MultiProc or IPython on a single multicore machine. (possible values: true and false; default value: true)
display_variable
What DISPLAY variable should all command line interfaces be run with. This is useful if you are using xnest or Xvfb and you would like to redirect all spawned windows to it. (possible values: any X server address; default value: not set)
remove_unnecessary_outputs
This will remove any interface outputs not needed by the workflow. If the required outputs from a node changes, rerunning the workflow will rerun the node. Outputs of leaf nodes (nodes whose outputs are not connected to any other nodes) will never be deleted independent of this parameter. (possible values: true and false; default value: true)
try_hard_link_datasink
When the DataSink is used to produce an orginized output file outside of nipypes internal cache structure, a file system hard link will be attempted first. A hard link allow multiple file paths to point to the same physical storage location on disk if the conditions allow. By refering to the same physical file on disk (instead of copying files byte-by-byte) we can avoid unnecessary data duplication. If hard links are not supported for the source or destination paths specified, then a standard byte-by-byte copy is used. (possible values: true and false; default value: true)
use_relative_paths
Should the paths stored in results (and used to look for inputs) be relative or absolute. Relative paths allow moving the whole working directory around but may cause problems with symlinks. (possible values: true and false; default value: false)
local_hash_check
Perform the hash check on the job submission machine. This option minimizes the number of jobs submitted to a cluster engine or a multiprocessing pool to only those that need to be rerun. (possible values: true and false; default value: true)
job_finished_timeout
When batch jobs are submitted through, SGE/PBS/Condor they could be killed externally. Nipype checks to see if a results file exists to determine if the node has completed. This timeout determines for how long this check is done after a job finish is detected. (float in seconds; default value: 5)
remove_node_directories (EXPERIMENTAL)
Removes directories whose outputs have already been used up. Doesn’t work with IdentiInterface or any node that patches data through (without copying) (possible values: true and false; default value: false)
stop_on_unknown_version
If this is set to True, an underlying interface will raise an error, when no version information is available. Please notify developers or submit a patch.
parameterize_dirs
If this is set to True, the node’s output directory will contain full parameterization of any iterable, otherwise parameterizations over 32 characters will be replaced by their hash. (possible values: true and false; default value: true)
poll_sleep_duration
This controls how long the job submission loop will sleep between submitting all pending jobs and checking for job completion. To be nice to cluster schedulers the default is set to 2 seconds.
xvfb_max_wait
Maximum time (in seconds) to wait for Xvfb to start, if the _redirect_x parameter of an Interface is True.

Example

[logging]
workflow_level = DEBUG

[execution]
stop_on_first_crash = true
hash_method = timestamp
display_variable = :1

Workflow.config property has a form of a nested dictionary reflecting the structure of the .cfg file.

myworkflow = pe.Workflow()
myworkflow.config['execution'] = {'stop_on_first_rerun': 'True',
                                   'hash_method': 'timestamp'}

You can also directly set global config options in your workflow script. An example is shown below. This needs to be called before you import the pipeline or the logger. Otherwise logging level will not be reset.

from nipype import config
cfg = dict(logging=dict(workflow_level = 'DEBUG'),
           execution={'stop_on_first_crash': False,
                      'hash_method': 'content'})
config.update_config(cfg)

Enabling logging to file

By default, logging to file is disabled. One can enable and write the file to a location of choice as in the example below.

import os
from nipype import config, logging
config.update_config({'logging': {'log_directory': os.getcwd(),
                                  'log_to_file': True}})
logging.update_logging(config)

The logging update line is necessary to change the behavior of logging such as output directory, logging level, etc.,.

Debug configuration

To enable debug mode, one can insert the following lines:

from nipype import config, logging
config.enable_debug_mode()
logging.update_logging(config)

In this mode the following variables are set:

config.set('execution', 'stop_on_first_crash', 'true')
config.set('execution', 'remove_unnecessary_outputs', 'false')
config.set('logging', 'workflow_level', 'DEBUG')
config.set('logging', 'interface_level', 'DEBUG')