workflows.fmri.fsl.preprocess¶
create_featreg_preproc()
¶
Create a FEAT preprocessing workflow with registration to one volume of the first run
Parameters¶
name : name of workflow (default: featpreproc)
highpass : boolean (default: True)
whichvol : which volume of the first run to register to ('first', 'middle', 'last', 'mean')
Inputs:
inputspec.func : functional runs (filename or list of filenames)
inputspec.fwhm : fwhm for smoothing with SUSAN
inputspec.highpass : HWHM in TRs (if created with highpass=True)
Outputs:
outputspec.reference : volume to which runs are realigned
outputspec.motion_parameters : motion correction parameters
outputspec.realigned_files : motion corrected files
outputspec.motion_plots : plots of motion correction parameters
outputspec.mask : mask file used to mask the brain
outputspec.smoothed_files : smoothed functional data
outputspec.highpassed_files : highpassed functional data (if highpass=True)
outputspec.mean : mean file
Example¶
>>> preproc = create_featreg_preproc()
>>> preproc.inputs.inputspec.func = ['f3.nii', 'f5.nii']
>>> preproc.inputs.inputspec.fwhm = 5
>>> preproc.inputs.inputspec.highpass = 128./(2*2.5)
>>> preproc.base_dir = '/tmp'
>>> preproc.run()
>>> preproc = create_featreg_preproc(highpass=False, whichvol='mean')
>>> preproc.inputs.inputspec.func = 'f3.nii'
>>> preproc.inputs.inputspec.fwhm = 5
>>> preproc.base_dir = '/tmp'
>>> preproc.run()
Graph¶
create_fsl_fs_preproc()
¶
Create a FEAT preprocessing workflow together with freesurfer
Parameters¶
name : name of workflow (default: preproc)
highpass : boolean (default: True)
whichvol : which volume of the first run to register to ('first', 'middle', 'mean')
Inputs:
inputspec.func : functional runs (filename or list of filenames)
inputspec.fwhm : fwhm for smoothing with SUSAN
inputspec.highpass : HWHM in TRs (if created with highpass=True)
inputspec.subject_id : freesurfer subject id
inputspec.subjects_dir : freesurfer subjects dir
Outputs:
outputspec.reference : volume to which runs are realigned
outputspec.motion_parameters : motion correction parameters
outputspec.realigned_files : motion corrected files
outputspec.motion_plots : plots of motion correction parameters
outputspec.mask_file : mask file used to mask the brain
outputspec.smoothed_files : smoothed functional data
outputspec.highpassed_files : highpassed functional data (if highpass=True)
outputspec.reg_file : bbregister registration files
outputspec.reg_cost : bbregister registration cost files
Example¶
>>> preproc = create_fsl_fs_preproc(whichvol='first')
>>> preproc.inputs.inputspec.highpass = 128./(2*2.5)
>>> preproc.inputs.inputspec.func = ['f3.nii', 'f5.nii']
>>> preproc.inputs.inputspec.subjects_dir = '.'
>>> preproc.inputs.inputspec.subject_id = 's1'
>>> preproc.inputs.inputspec.fwhm = 6
>>> preproc.run()
Graph¶
create_parallelfeat_preproc()
¶
Preprocess each run with FSL independently of the others
Parameters¶
name : name of workflow (default: featpreproc)
highpass : boolean (default: True)
Inputs:
inputspec.func : functional runs (filename or list of filenames)
inputspec.fwhm : fwhm for smoothing with SUSAN
inputspec.highpass : HWHM in TRs (if created with highpass=True)
Outputs:
outputspec.reference : volume to which runs are realigned
outputspec.motion_parameters : motion correction parameters
outputspec.realigned_files : motion corrected files
outputspec.motion_plots : plots of motion correction parameters
outputspec.mask : mask file used to mask the brain
outputspec.smoothed_files : smoothed functional data
outputspec.highpassed_files : highpassed functional data (if highpass=True)
outputspec.mean : mean file
Example¶
>>> preproc = create_parallelfeat_preproc()
>>> preproc.inputs.inputspec.func = ['f3.nii', 'f5.nii']
>>> preproc.inputs.inputspec.fwhm = 5
>>> preproc.inputs.inputspec.highpass = 128./(2*2.5)
>>> preproc.base_dir = '/tmp'
>>> preproc.run()
>>> preproc = create_parallelfeat_preproc(highpass=False)
>>> preproc.inputs.inputspec.func = 'f3.nii'
>>> preproc.inputs.inputspec.fwhm = 5
>>> preproc.base_dir = '/tmp'
>>> preproc.run()
Graph¶
create_reg_workflow()
¶
Create a FEAT preprocessing workflow
Parameters¶
name : name of workflow (default: 'registration')
Inputs:
inputspec.source_files : files (filename or list of filenames to register)
inputspec.mean_image : reference image to use
inputspec.anatomical_image : anatomical image to coregister to
inputspec.target_image : registration target
Outputs:
outputspec.func2anat_transform : FLIRT transform
outputspec.anat2target_transform : FLIRT+FNIRT transform
outputspec.transformed_files : transformed files in target space
outputspec.transformed_mean : mean image in target space
Example¶
Graph¶
create_susan_smooth()
¶
Create a SUSAN smoothing workflow
Parameters¶
name : name of workflow (default: susan_smooth)
separate_masks : separate masks for each run
Inputs:
inputnode.in_files : functional runs (filename or list of filenames)
inputnode.fwhm : fwhm for smoothing with SUSAN
inputnode.mask_file : mask used for estimating SUSAN thresholds (but not for smoothing)
Outputs:
outputnode.smoothed_files : functional runs (filename or list of filenames)
Example¶
>>> smooth = create_susan_smooth()
>>> smooth.inputs.inputnode.in_files = 'f3.nii'
>>> smooth.inputs.inputnode.fwhm = 5
>>> smooth.inputs.inputnode.mask_file = 'mask.nii'
>>> smooth.run()