workflows.dmri.fsl.tbss¶
create_tbss_1_preproc()
¶
Preprocess FA data for TBSS: erodes a little and zero end slicers and creates masks(for use in FLIRT & FNIRT from FSL). A pipeline that does the same as tbss_1_preproc script in FSL
Example¶
>>> from nipype.workflows.dmri.fsl import tbss
>>> tbss1 = tbss.create_tbss_1_preproc()
>>> tbss1.inputs.inputnode.fa_list = ['s1_FA.nii', 's2_FA.nii', 's3_FA.nii']
Inputs:
inputnode.fa_list
Outputs:
outputnode.fa_list
outputnode.mask_list
outputnode.slices
Graph¶
create_tbss_2_reg()
¶
TBSS nonlinear registration: A pipeline that does the same as ‘tbss_2_reg -t’ script in FSL. ‘-n’ option is not supported at the moment.
Example¶
>>> from nipype.workflows.dmri.fsl import tbss
>>> tbss2 = create_tbss_2_reg(name="tbss2")
>>> tbss2.inputs.inputnode.target = fsl.Info.standard_image("FMRIB58_FA_1mm.nii.gz")
>>> tbss2.inputs.inputnode.fa_list = ['s1_FA.nii', 's2_FA.nii', 's3_FA.nii']
>>> tbss2.inputs.inputnode.mask_list = ['s1_mask.nii', 's2_mask.nii', 's3_mask.nii']
Inputs:
inputnode.fa_list
inputnode.mask_list
inputnode.target
Outputs:
outputnode.field_list
Graph¶
create_tbss_3_postreg()
¶
Post-registration processing: derive mean_FA and mean_FA_skeleton from mean of all subjects in study. Target is assumed to be FMRIB58_FA_1mm. A pipeline that does the same as ‘tbss_3_postreg -S’ script from FSL Setting ‘estimate_skeleton to False will use precomputed FMRIB58_FA-skeleton_1mm skeleton (same as ‘tbss_3_postreg -T’).
Example¶
>>> from nipype.workflows.dmri.fsl import tbss
>>> tbss3 = tbss.create_tbss_3_postreg()
>>> tbss3.inputs.inputnode.fa_list = ['s1_wrapped_FA.nii', 's2_wrapped_FA.nii', 's3_wrapped_FA.nii']
Inputs:
inputnode.field_list
inputnode.fa_list
Outputs:
outputnode.groupmask
outputnode.skeleton_file
outputnode.meanfa_file
outputnode.mergefa_file
Graph¶
create_tbss_4_prestats()
¶
- Post-registration processing:Creating skeleton mask using a threshold
- projecting all FA data onto skeleton.
A pipeline that does the same as tbss_4_prestats script from FSL
Example¶
>>> from nipype.workflows.dmri.fsl import tbss
>>> tbss4 = tbss.create_tbss_4_prestats(name='tbss4')
>>> tbss4.inputs.inputnode.skeleton_thresh = 0.2
Inputs:
inputnode.skeleton_thresh
inputnode.groupmask
inputnode.skeleton_file
inputnode.meanfa_file
inputnode.mergefa_file
Outputs:
outputnode.all_FA_skeletonised
outputnode.mean_FA_skeleton_mask
outputnode.distance_map
outputnode.skeleton_file
Graph¶
create_tbss_all()
¶
Create a pipeline that combines create_tbss_* pipelines
Example¶
>>> from nipype.workflows.dmri.fsl import tbss
>>> tbss = tbss.create_tbss_all('tbss')
>>> tbss.inputs.inputnode.skeleton_thresh = 0.2
Inputs:
inputnode.fa_list
inputnode.skeleton_thresh
Outputs:
outputnode.meanfa_file
outputnode.projectedfa_file
outputnode.skeleton_file
outputnode.skeleton_mask
Graph¶
create_tbss_non_FA()
¶
A pipeline that implement tbss_non_FA in FSL
Example¶
>>> from nipype.workflows.dmri.fsl import tbss
>>> tbss_MD = tbss.create_tbss_non_FA()
>>> tbss_MD.inputs.inputnode.file_list = []
>>> tbss_MD.inputs.inputnode.field_list = []
>>> tbss_MD.inputs.inputnode.skeleton_thresh = 0.2
>>> tbss_MD.inputs.inputnode.groupmask = './xxx'
>>> tbss_MD.inputs.inputnode.meanfa_file = './xxx'
>>> tbss_MD.inputs.inputnode.distance_map = []
>>> tbss_MD.inputs.inputnode.all_FA_file = './xxx'
Inputs:
inputnode.file_list
inputnode.field_list
inputnode.skeleton_thresh
inputnode.groupmask
inputnode.meanfa_file
inputnode.distance_map
inputnode.all_FA_file
Outputs:
outputnode.projected_nonFA_file