interfaces.fsl.epi

ApplyTOPUP

Link to code

Wraps command applytopup

Interface for FSL topup, a tool for estimating and correcting susceptibility induced distortions. General reference and use example.

Examples

>>> from nipype.interfaces.fsl import ApplyTOPUP
>>> applytopup = ApplyTOPUP()
>>> applytopup.inputs.in_files = ["epi.nii", "epi_rev.nii"]
>>> applytopup.inputs.encoding_file = "topup_encoding.txt"
>>> applytopup.inputs.in_topup_fieldcoef = "topup_fieldcoef.nii.gz"
>>> applytopup.inputs.in_topup_movpar = "topup_movpar.txt"
>>> applytopup.inputs.output_type = "NIFTI_GZ"
>>> applytopup.cmdline 
'applytopup --datain=topup_encoding.txt --imain=epi.nii,epi_rev.nii --inindex=1,2 --topup=topup --out=epi_corrected.nii.gz'
>>> res = applytopup.run() 

Inputs:

[Mandatory]
encoding_file: (an existing file name)
        name of text file with PE directions/times
        flag: --datain=%s
in_files: (a list of items which are an existing file name)
        name of file with images
        flag: --imain=%s

[Optional]
args: (a unicode string)
        Additional parameters to the command
        flag: %s
datatype: (u'char' or u'short' or u'int' or u'float' or u'double')
        force output data type
        flag: -d=%s
environ: (a dictionary with keys which are a newbytes or None or a
         newstr or None and with values which are a newbytes or None or a
         newstr or None, nipype default value: {})
        Environment variables
ignore_exception: (a boolean, nipype default value: False)
        Print an error message instead of throwing an exception in case the
        interface fails to run
in_index: (a list of items which are an integer (int or long))
        comma separated list of indices corresponding to --datain
        flag: --inindex=%s
in_topup_fieldcoef: (an existing file name)
        topup file containing the field coefficients
        flag: --topup=%s
        requires: in_topup_movpar
in_topup_movpar: (an existing file name)
        topup movpar.txt file
        requires: in_topup_fieldcoef
interp: (u'trilinear' or u'spline')
        interpolation method
        flag: --interp=%s
method: (u'jac' or u'lsr')
        use jacobian modulation (jac) or least-squares resampling (lsr)
        flag: --method=%s
out_corrected: (a file name)
        output (warped) image
        flag: --out=%s
output_type: (u'NIFTI_PAIR' or u'NIFTI_PAIR_GZ' or u'NIFTI_GZ' or
         u'NIFTI')
        FSL output type
terminal_output: (u'stream' or u'allatonce' or u'file' or u'none')
        Control terminal output: `stream` - displays to terminal immediately
        (default), `allatonce` - waits till command is finished to display
        output, `file` - writes output to file, `none` - output is ignored

Outputs:

out_corrected: (an existing file name)
        name of 4D image file with unwarped images

EPIDeWarp

Link to code

Wraps command epidewarp.fsl

Wraps the unwarping script epidewarp.fsl.

Warning

deprecated in FSL, please use nipype.workflows.dmri.preprocess.epi.sdc_fmb() instead.

Examples

>>> from nipype.interfaces.fsl import EPIDeWarp
>>> dewarp = EPIDeWarp()
>>> dewarp.inputs.epi_file = "functional.nii"
>>> dewarp.inputs.mag_file = "magnitude.nii"
>>> dewarp.inputs.dph_file = "phase.nii"
>>> dewarp.inputs.output_type = "NIFTI_GZ"
>>> dewarp.cmdline 
'epidewarp.fsl --mag magnitude.nii --dph phase.nii --epi functional.nii --esp 0.58 --exfdw .../exfdw.nii.gz --nocleanup --sigma 2 --tediff 2.46 --tmpdir .../temp --vsm .../vsm.nii.gz'
>>> res = dewarp.run() 

Inputs:

[Mandatory]
dph_file: (an existing file name)
        Phase file assumed to be scaled from 0 to 4095
        flag: --dph %s
mag_file: (an existing file name)
        Magnitude file
        flag: --mag %s, position: 0

[Optional]
args: (a unicode string)
        Additional parameters to the command
        flag: %s
cleanup: (a boolean)
        cleanup
        flag: --cleanup
environ: (a dictionary with keys which are a newbytes or None or a
         newstr or None and with values which are a newbytes or None or a
         newstr or None, nipype default value: {})
        Environment variables
epi_file: (an existing file name)
        EPI volume to unwarp
        flag: --epi %s
epidw: (a string)
        dewarped epi volume
        flag: --epidw %s
esp: (a float, nipype default value: 0.58)
        EPI echo spacing
        flag: --esp %s
exf_file: (an existing file name)
        example func volume (or use epi)
        flag: --exf %s
exfdw: (a string)
        dewarped example func volume
        flag: --exfdw %s
ignore_exception: (a boolean, nipype default value: False)
        Print an error message instead of throwing an exception in case the
        interface fails to run
nocleanup: (a boolean, nipype default value: True)
        no cleanup
        flag: --nocleanup
output_type: (u'NIFTI_PAIR' or u'NIFTI_PAIR_GZ' or u'NIFTI_GZ' or
         u'NIFTI')
        FSL output type
sigma: (an integer (int or long), nipype default value: 2)
        2D spatial gaussing smoothing stdev (default = 2mm)
        flag: --sigma %s
tediff: (a float, nipype default value: 2.46)
        difference in B0 field map TEs
        flag: --tediff %s
terminal_output: (u'stream' or u'allatonce' or u'file' or u'none')
        Control terminal output: `stream` - displays to terminal immediately
        (default), `allatonce` - waits till command is finished to display
        output, `file` - writes output to file, `none` - output is ignored
tmpdir: (a string)
        tmpdir
        flag: --tmpdir %s
vsm: (a string)
        voxel shift map
        flag: --vsm %s

Outputs:

exf_mask: (a file name)
        Mask from example functional volume
exfdw: (a file name)
        dewarped functional volume example
unwarped_file: (a file name)
        unwarped epi file
vsm_file: (a file name)
        voxel shift map

Eddy

Link to code

Wraps command eddy_openmp

Interface for FSL eddy, a tool for estimating and correcting eddy currents induced distortions. User guide and more info regarding acqp file.

Examples

>>> from nipype.interfaces.fsl import Eddy
>>> eddy = Eddy()
>>> eddy.inputs.in_file = 'epi.nii'
>>> eddy.inputs.in_mask  = 'epi_mask.nii'
>>> eddy.inputs.in_index = 'epi_index.txt'
>>> eddy.inputs.in_acqp  = 'epi_acqp.txt'
>>> eddy.inputs.in_bvec  = 'bvecs.scheme'
>>> eddy.inputs.in_bval  = 'bvals.scheme'
>>> eddy.cmdline 
'eddy_openmp --acqp=epi_acqp.txt --bvals=bvals.scheme --bvecs=bvecs.scheme --imain=epi.nii --index=epi_index.txt --mask=epi_mask.nii --out=.../eddy_corrected'
>>> res = eddy.run() 

Inputs:

[Mandatory]
in_acqp: (an existing file name)
        File containing acquisition parameters
        flag: --acqp=%s
in_bval: (an existing file name)
        File containing the b-values for all volumes in --imain
        flag: --bvals=%s
in_bvec: (an existing file name)
        File containing the b-vectors for all volumes in --imain
        flag: --bvecs=%s
in_file: (an existing file name)
        File containing all the images to estimate distortions for
        flag: --imain=%s
in_index: (an existing file name)
        File containing indices for all volumes in --imain into --acqp and
        --topup
        flag: --index=%s
in_mask: (an existing file name)
        Mask to indicate brain
        flag: --mask=%s

[Optional]
args: (a unicode string)
        Additional parameters to the command
        flag: %s
environ: (a dictionary with keys which are a newbytes or None or a
         newstr or None and with values which are a newbytes or None or a
         newstr or None, nipype default value: {})
        Environment variables
field: (a unicode string)
        NonTOPUP fieldmap scaled in Hz - filename has to be provided without
        an extension. TOPUP is strongly recommended
        flag: --field=%s
field_mat: (an existing file name)
        Matrix that specifies the relative locations of the field specified
        by --field and first volume in file --imain
        flag: --field_mat=%s
flm: (u'linear' or u'quadratic' or u'cubic')
        First level EC model
        flag: --flm=%s
fwhm: (a float)
        FWHM for conditioning filter when estimating the parameters
        flag: --fwhm=%s
ignore_exception: (a boolean, nipype default value: False)
        Print an error message instead of throwing an exception in case the
        interface fails to run
in_topup_fieldcoef: (an existing file name)
        topup file containing the field coefficients
        flag: --topup=%s
        requires: in_topup_movpar
in_topup_movpar: (an existing file name)
        topup movpar.txt file
        requires: in_topup_fieldcoef
is_shelled: (a boolean)
        Override internal check to ensure that date are acquired on a set of
        b-value shells
        flag: --data_is_shelled
method: (u'jac' or u'lsr')
        Final resampling method (jacobian/least squares)
        flag: --resamp=%s
niter: (an integer (int or long))
        Number of iterations
        flag: --niter=%s
num_threads: (an integer (int or long), nipype default value: 1)
        Number of openmp threads to use
out_base: (a unicode string, nipype default value: eddy_corrected)
        basename for output (warped) image
        flag: --out=%s
output_type: (u'NIFTI_PAIR' or u'NIFTI_PAIR_GZ' or u'NIFTI_GZ' or
         u'NIFTI')
        FSL output type
repol: (a boolean)
        Detect and replace outlier slices
        flag: --repol
session: (an existing file name)
        File containing session indices for all volumes in --imain
        flag: --session=%s
terminal_output: (u'stream' or u'allatonce' or u'file' or u'none')
        Control terminal output: `stream` - displays to terminal immediately
        (default), `allatonce` - waits till command is finished to display
        output, `file` - writes output to file, `none` - output is ignored
use_cuda: (a boolean)
        Run eddy using cuda gpu

Outputs:

out_corrected: (an existing file name)
        4D image file containing all the corrected volumes
out_parameter: (an existing file name)
        text file with parameters definining the field and movement for each
        scan

EddyCorrect

Link to code

Wraps command eddy_correct

Warning

Deprecated in FSL. Please use nipype.interfaces.fsl.epi.Eddy instead

Example

>>> from nipype.interfaces.fsl import EddyCorrect
>>> eddyc = EddyCorrect(in_file='diffusion.nii',
...                     out_file="diffusion_edc.nii", ref_num=0)
>>> eddyc.cmdline 
'eddy_correct diffusion.nii diffusion_edc.nii 0'

Inputs:

[Mandatory]
in_file: (an existing file name)
        4D input file
        flag: %s, position: 0
ref_num: (an integer (int or long), nipype default value: 0)
        reference number
        flag: %d, position: 2

[Optional]
args: (a unicode string)
        Additional parameters to the command
        flag: %s
environ: (a dictionary with keys which are a newbytes or None or a
         newstr or None and with values which are a newbytes or None or a
         newstr or None, nipype default value: {})
        Environment variables
ignore_exception: (a boolean, nipype default value: False)
        Print an error message instead of throwing an exception in case the
        interface fails to run
out_file: (a file name)
        4D output file
        flag: %s, position: 1
output_type: (u'NIFTI_PAIR' or u'NIFTI_PAIR_GZ' or u'NIFTI_GZ' or
         u'NIFTI')
        FSL output type
terminal_output: (u'stream' or u'allatonce' or u'file' or u'none')
        Control terminal output: `stream` - displays to terminal immediately
        (default), `allatonce` - waits till command is finished to display
        output, `file` - writes output to file, `none` - output is ignored

Outputs:

eddy_corrected: (an existing file name)
        path/name of 4D eddy corrected output file

EpiReg

Link to code

Wraps command epi_reg

Runs FSL epi_reg script for simultaneous coregistration and fieldmap unwarping.

Examples

>>> from nipype.interfaces.fsl import EpiReg
>>> epireg = EpiReg()
>>> epireg.inputs.epi='epi.nii'
>>> epireg.inputs.t1_head='T1.nii'
>>> epireg.inputs.t1_brain='T1_brain.nii'
>>> epireg.inputs.out_base='epi2struct'
>>> epireg.inputs.fmap='fieldmap_phase_fslprepared.nii'
>>> epireg.inputs.fmapmag='fieldmap_mag.nii'
>>> epireg.inputs.fmapmagbrain='fieldmap_mag_brain.nii'
>>> epireg.inputs.echospacing=0.00067
>>> epireg.inputs.pedir='y'
>>> epireg.cmdline 
'epi_reg --echospacing=0.000670 --fmap=fieldmap_phase_fslprepared.nii --fmapmag=fieldmap_mag.nii --fmapmagbrain=fieldmap_mag_brain.nii --noclean --pedir=y --epi=epi.nii --t1=T1.nii --t1brain=T1_brain.nii --out=epi2struct'
>>> epireg.run() 

Inputs:

[Mandatory]
epi: (an existing file name)
        EPI image
        flag: --epi=%s, position: -4
t1_brain: (an existing file name)
        brain extracted T1 image
        flag: --t1brain=%s, position: -2
t1_head: (an existing file name)
        wholehead T1 image
        flag: --t1=%s, position: -3

[Optional]
args: (a unicode string)
        Additional parameters to the command
        flag: %s
echospacing: (a float)
        Effective EPI echo spacing (sometimes called dwell time) - in
        seconds
        flag: --echospacing=%f
environ: (a dictionary with keys which are a newbytes or None or a
         newstr or None and with values which are a newbytes or None or a
         newstr or None, nipype default value: {})
        Environment variables
fmap: (an existing file name)
        fieldmap image (in rad/s)
        flag: --fmap=%s
fmapmag: (an existing file name)
        fieldmap magnitude image - wholehead
        flag: --fmapmag=%s
fmapmagbrain: (an existing file name)
        fieldmap magnitude image - brain extracted
        flag: --fmapmagbrain=%s
ignore_exception: (a boolean, nipype default value: False)
        Print an error message instead of throwing an exception in case the
        interface fails to run
no_clean: (a boolean, nipype default value: True)
        do not clean up intermediate files
        flag: --noclean
no_fmapreg: (a boolean)
        do not perform registration of fmap to T1 (use if fmap already
        registered)
        flag: --nofmapreg
out_base: (a string, nipype default value: epi2struct)
        output base name
        flag: --out=%s, position: -1
output_type: (u'NIFTI_PAIR' or u'NIFTI_PAIR_GZ' or u'NIFTI_GZ' or
         u'NIFTI')
        FSL output type
pedir: (u'x' or u'y' or u'z' or u'-x' or u'-y' or u'-z')
        phase encoding direction, dir = x/y/z/-x/-y/-z
        flag: --pedir=%s
terminal_output: (u'stream' or u'allatonce' or u'file' or u'none')
        Control terminal output: `stream` - displays to terminal immediately
        (default), `allatonce` - waits till command is finished to display
        output, `file` - writes output to file, `none` - output is ignored
weight_image: (an existing file name)
        weighting image (in T1 space)
        flag: --weight=%s
wmseg: (an existing file name)
        white matter segmentation of T1 image, has to be named like the
        t1brain and end on _wmseg
        flag: --wmseg=%s

Outputs:

epi2str_inv: (an existing file name)
        rigid structural-to-epi transform
epi2str_mat: (an existing file name)
        rigid epi-to-structural transform
fmap2epi_mat: (an existing file name)
        rigid fieldmap-to-epi transform
fmap2str_mat: (an existing file name)
        rigid fieldmap-to-structural transform
fmap_epi: (an existing file name)
        fieldmap in epi space
fmap_str: (an existing file name)
        fieldmap in structural space
fmapmag_str: (an existing file name)
        fieldmap magnitude image in structural space
fullwarp: (an existing file name)
        warpfield to unwarp epi and transform into structural space
out_1vol: (an existing file name)
        unwarped and coregistered single volume
out_file: (an existing file name)
        unwarped and coregistered epi input
shiftmap: (an existing file name)
        shiftmap in epi space
wmedge: (an existing file name)
        white matter edges for visualization
wmseg: (an existing file name)
        white matter segmentation used in flirt bbr

PrepareFieldmap

Link to code

Wraps command fsl_prepare_fieldmap

Interface for the fsl_prepare_fieldmap script (FSL 5.0)

Prepares a fieldmap suitable for FEAT from SIEMENS data - saves output in rad/s format (e.g. `fsl_prepare_fieldmap SIEMENS images_3_gre_field_mapping images_4_gre_field_mapping fmap_rads 2.65`).

Examples

>>> from nipype.interfaces.fsl import PrepareFieldmap
>>> prepare = PrepareFieldmap()
>>> prepare.inputs.in_phase = "phase.nii"
>>> prepare.inputs.in_magnitude = "magnitude.nii"
>>> prepare.inputs.output_type = "NIFTI_GZ"
>>> prepare.cmdline 
'fsl_prepare_fieldmap SIEMENS phase.nii magnitude.nii .../phase_fslprepared.nii.gz 2.460000'
>>> res = prepare.run() 

Inputs:

[Mandatory]
delta_TE: (a float, nipype default value: 2.46)
        echo time difference of the fieldmap sequence in ms. (usually 2.46ms
        in Siemens)
        flag: %f, position: -2
in_magnitude: (an existing file name)
        Magnitude difference map, brain extracted
        flag: %s, position: 3
in_phase: (an existing file name)
        Phase difference map, in SIEMENS format range from 0-4096 or 0-8192)
        flag: %s, position: 2

[Optional]
args: (a unicode string)
        Additional parameters to the command
        flag: %s
environ: (a dictionary with keys which are a newbytes or None or a
         newstr or None and with values which are a newbytes or None or a
         newstr or None, nipype default value: {})
        Environment variables
ignore_exception: (a boolean, nipype default value: False)
        Print an error message instead of throwing an exception in case the
        interface fails to run
nocheck: (a boolean, nipype default value: False)
        do not perform sanity checks for image size/range/dimensions
        flag: --nocheck, position: -1
out_fieldmap: (a file name)
        output name for prepared fieldmap
        flag: %s, position: 4
output_type: (u'NIFTI_PAIR' or u'NIFTI_PAIR_GZ' or u'NIFTI_GZ' or
         u'NIFTI')
        FSL output type
scanner: (a string, nipype default value: SIEMENS)
        must be SIEMENS
        flag: %s, position: 1
terminal_output: (u'stream' or u'allatonce' or u'file' or u'none')
        Control terminal output: `stream` - displays to terminal immediately
        (default), `allatonce` - waits till command is finished to display
        output, `file` - writes output to file, `none` - output is ignored

Outputs:

out_fieldmap: (an existing file name)
        output name for prepared fieldmap

SigLoss

Link to code

Wraps command sigloss

Estimates signal loss from a field map (in rad/s)

Examples

>>> from nipype.interfaces.fsl import SigLoss
>>> sigloss = SigLoss()
>>> sigloss.inputs.in_file = "phase.nii"
>>> sigloss.inputs.echo_time = 0.03
>>> sigloss.inputs.output_type = "NIFTI_GZ"
>>> sigloss.cmdline 
'sigloss --te=0.030000 -i phase.nii -s .../phase_sigloss.nii.gz'
>>> res = sigloss.run() 

Inputs:

[Mandatory]
in_file: (an existing file name)
        b0 fieldmap file
        flag: -i %s

[Optional]
args: (a unicode string)
        Additional parameters to the command
        flag: %s
echo_time: (a float)
        echo time in seconds
        flag: --te=%f
environ: (a dictionary with keys which are a newbytes or None or a
         newstr or None and with values which are a newbytes or None or a
         newstr or None, nipype default value: {})
        Environment variables
ignore_exception: (a boolean, nipype default value: False)
        Print an error message instead of throwing an exception in case the
        interface fails to run
mask_file: (an existing file name)
        brain mask file
        flag: -m %s
out_file: (a file name)
        output signal loss estimate file
        flag: -s %s
output_type: (u'NIFTI_PAIR' or u'NIFTI_PAIR_GZ' or u'NIFTI_GZ' or
         u'NIFTI')
        FSL output type
slice_direction: (u'x' or u'y' or u'z')
        slicing direction
        flag: -d %s
terminal_output: (u'stream' or u'allatonce' or u'file' or u'none')
        Control terminal output: `stream` - displays to terminal immediately
        (default), `allatonce` - waits till command is finished to display
        output, `file` - writes output to file, `none` - output is ignored

Outputs:

out_file: (an existing file name)
        signal loss estimate file

TOPUP

Link to code

Wraps command topup

Interface for FSL topup, a tool for estimating and correcting susceptibility induced distortions. See FSL documentation for reference, usage examples, and exemplary config files.

Examples

>>> from nipype.interfaces.fsl import TOPUP
>>> topup = TOPUP()
>>> topup.inputs.in_file = "b0_b0rev.nii"
>>> topup.inputs.encoding_file = "topup_encoding.txt"
>>> topup.inputs.output_type = "NIFTI_GZ"
>>> topup.cmdline 
'topup --config=b02b0.cnf --datain=topup_encoding.txt --imain=b0_b0rev.nii --out=b0_b0rev_base --iout=b0_b0rev_corrected.nii.gz --fout=b0_b0rev_field.nii.gz --logout=b0_b0rev_topup.log'
>>> res = topup.run() 

Inputs:

[Mandatory]
encoding_direction: (a list of items which are u'y' or u'x' or u'z'
         or u'x-' or u'y-' or u'z-')
        encoding direction for automatic generation of encoding_file
        flag: --datain=%s
        mutually_exclusive: encoding_file
        requires: readout_times
encoding_file: (an existing file name)
        name of text file with PE directions/times
        flag: --datain=%s
        mutually_exclusive: encoding_direction
in_file: (an existing file name)
        name of 4D file with images
        flag: --imain=%s
readout_times: (a list of items which are a float)
        readout times (dwell times by # phase-encode steps minus 1)
        mutually_exclusive: encoding_file
        requires: encoding_direction

[Optional]
args: (a unicode string)
        Additional parameters to the command
        flag: %s
config: (a string, nipype default value: b02b0.cnf)
        Name of config file specifying command line arguments
        flag: --config=%s
environ: (a dictionary with keys which are a newbytes or None or a
         newstr or None and with values which are a newbytes or None or a
         newstr or None, nipype default value: {})
        Environment variables
estmov: (1 or 0)
        estimate movements if set
        flag: --estmov=%d
fwhm: (a float)
        FWHM (in mm) of gaussian smoothing kernel
        flag: --fwhm=%f
ignore_exception: (a boolean, nipype default value: False)
        Print an error message instead of throwing an exception in case the
        interface fails to run
interp: (u'spline' or u'linear')
        Image interpolation model, linear or spline.
        flag: --interp=%s
max_iter: (an integer (int or long))
        max # of non-linear iterations
        flag: --miter=%d
minmet: (0 or 1)
        Minimisation method 0=Levenberg-Marquardt, 1=Scaled Conjugate
        Gradient
        flag: --minmet=%d
numprec: (u'double' or u'float')
        Precision for representing Hessian, double or float.
        flag: --numprec=%s
out_base: (a file name)
        base-name of output files (spline coefficients (Hz) and movement
        parameters)
        flag: --out=%s
out_corrected: (a file name)
        name of 4D image file with unwarped images
        flag: --iout=%s
out_field: (a file name)
        name of image file with field (Hz)
        flag: --fout=%s
out_logfile: (a file name)
        name of log-file
        flag: --logout=%s
output_type: (u'NIFTI_PAIR' or u'NIFTI_PAIR_GZ' or u'NIFTI_GZ' or
         u'NIFTI')
        FSL output type
reg_lambda: (a float)
        lambda weighting value of the regularisation term
        flag: --miter=%0.f
regmod: (u'bending_energy' or u'membrane_energy')
        Regularisation term implementation. Defaults to bending_energy. Note
        that the two functions have vastly different scales. The membrane
        energy is based on the first derivatives and the bending energy on
        the second derivatives. The second derivatives will typically be
        much smaller than the first derivatives, so input lambda will have
        to be larger for bending_energy to yield approximately the same
        level of regularisation.
        flag: --regmod=%s
regrid: (1 or 0)
        If set (=1), the calculations are done in a different grid
        flag: --regrid=%d
scale: (0 or 1)
        If set (=1), the images are individually scaled to a common mean
        flag: --scale=%d
splineorder: (an integer (int or long))
        order of spline, 2->Qadratic spline, 3->Cubic spline
        flag: --splineorder=%d
ssqlambda: (1 or 0)
        Weight lambda by the current value of the ssd. If used (=1), the
        effective weight of regularisation term becomes higher for the
        initial iterations, therefore initial steps are a little smoother
        than they would without weighting. This reduces the risk of finding
        a local minimum.
        flag: --ssqlambda=%d
subsamp: (an integer (int or long))
        sub-sampling scheme
        flag: --subsamp=%d
terminal_output: (u'stream' or u'allatonce' or u'file' or u'none')
        Control terminal output: `stream` - displays to terminal immediately
        (default), `allatonce` - waits till command is finished to display
        output, `file` - writes output to file, `none` - output is ignored
warp_res: (a float)
        (approximate) resolution (in mm) of warp basis for the different
        sub-sampling levels.
        flag: --warpres=%f

Outputs:

out_corrected: (a file name)
        name of 4D image file with unwarped images
out_enc_file: (a file name)
        encoding directions file output for applytopup
out_field: (a file name)
        name of image file with field (Hz)
out_fieldcoef: (an existing file name)
        file containing the field coefficients
out_logfile: (a file name)
        name of log-file
out_movpar: (an existing file name)
        movpar.txt output file