interfaces.freesurfer.longitudinal¶
FuseSegmentations¶
Wraps command mri_fuse_segmentations
fuse segmentations together from multiple timepoints
Examples¶
>>> from nipype.interfaces.freesurfer import FuseSegmentations
>>> fuse = FuseSegmentations()
>>> fuse.inputs.subject_id = 'tp.long.A.template'
>>> fuse.inputs.timepoints = ['tp1', 'tp2']
>>> fuse.inputs.out_file = 'aseg.fused.mgz'
>>> fuse.inputs.in_segmentations = ['aseg.mgz', 'aseg.mgz']
>>> fuse.inputs.in_segmentations_noCC = ['aseg.mgz', 'aseg.mgz']
>>> fuse.inputs.in_norms = ['norm.mgz', 'norm.mgz', 'norm.mgz']
>>> fuse.cmdline
'mri_fuse_segmentations -n norm.mgz -a aseg.mgz -c aseg.mgz tp.long.A.template tp1 tp2'
Inputs:
[Mandatory]
in_norms: (a list of items which are an existing file name)
-n <filename> - name of norm file to use (default: norm.mgs) must
include the corresponding norm file for all given timepoints as well
as for the current subject
flag: -n %s
in_segmentations: (a list of items which are an existing file name)
name of aseg file to use (default: aseg.mgz) must include the aseg
files for all the given timepoints
flag: -a %s
in_segmentations_noCC: (a list of items which are an existing file
name)
name of aseg file w/o CC labels (default: aseg.auto_noCCseg.mgz)
must include the corresponding file for all the given timepoints
flag: -c %s
out_file: (a file name)
output fused segmentation file
timepoints: (a list of items which are a string)
subject_ids or timepoints to be processed
flag: %s, position: -2
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
environ: (a dictionary with keys which are a newbytes or None or a
newstr or None and with values which are a newbytes or None or a
newstr or None, nipype default value: {})
Environment variables
ignore_exception: (a boolean, nipype default value: False)
Print an error message instead of throwing an exception in case the
interface fails to run
subject_id: (a string)
subject_id being processed
flag: %s, position: -3
subjects_dir: (an existing directory name)
subjects directory
terminal_output: (u'stream' or u'allatonce' or u'file' or u'none')
Control terminal output: `stream` - displays to terminal immediately
(default), `allatonce` - waits till command is finished to display
output, `file` - writes output to file, `none` - output is ignored
Outputs:
out_file: (a file name)
output fused segmentation file
RobustTemplate¶
Wraps command mri_robust_template
construct an unbiased robust template for longitudinal volumes
Examples¶
>>> from nipype.interfaces.freesurfer import RobustTemplate
>>> template = RobustTemplate()
>>> template.inputs.in_files = ['structural.nii', 'functional.nii']
>>> template.inputs.auto_detect_sensitivity = True
>>> template.inputs.average_metric = 'mean'
>>> template.inputs.initial_timepoint = 1
>>> template.inputs.fixed_timepoint = True
>>> template.inputs.no_iteration = True
>>> template.inputs.subsample_threshold = 200
>>> template.cmdline
'mri_robust_template --satit --average 0 --fixtp --mov structural.nii functional.nii --inittp 1 --noit --template mri_robust_template_out.mgz --subsample 200'
>>> template.inputs.out_file = 'T1.nii'
>>> template.cmdline
'mri_robust_template --satit --average 0 --fixtp --mov structural.nii functional.nii --inittp 1 --noit --template T1.nii --subsample 200'
>>> template.inputs.transform_outputs = ['structural.lta', 'functional.lta']
>>> template.inputs.scaled_intensity_outputs = ['structural-iscale.txt', 'functional-iscale.txt']
>>> template.cmdline
'mri_robust_template --satit --average 0 --fixtp --mov structural.nii functional.nii --inittp 1 --noit --template T1.nii --iscaleout structural-iscale.txt functional-iscale.txt --subsample 200 --lta structural.lta functional.lta'
>>> template.run()
References¶
[https://surfer.nmr.mgh.harvard.edu/fswiki/mri_robust_template]
Inputs:
[Mandatory]
auto_detect_sensitivity: (a boolean)
auto-detect good sensitivity (recommended for head or full brain
scans)
flag: --satit
mutually_exclusive: outlier_sensitivity
in_files: (a list of items which are an existing file name)
input movable volumes to be aligned to common mean/median template
flag: --mov %s
out_file: (a file name, nipype default value:
mri_robust_template_out.mgz)
output template volume (final mean/median image)
flag: --template %s
outlier_sensitivity: (a float)
set outlier sensitivity manually (e.g. "--sat 4.685" ). Higher
values mean less sensitivity.
flag: --sat %.4f
mutually_exclusive: auto_detect_sensitivity
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
average_metric: (u'median' or u'mean')
construct template from: 0 Mean, 1 Median (default)
flag: --average %d
environ: (a dictionary with keys which are a newbytes or None or a
newstr or None and with values which are a newbytes or None or a
newstr or None, nipype default value: {})
Environment variables
fixed_timepoint: (a boolean)
map everthing to init TP# (init TP is not resampled)
flag: --fixtp
ignore_exception: (a boolean, nipype default value: False)
Print an error message instead of throwing an exception in case the
interface fails to run
in_intensity_scales: (a list of items which are an existing file
name)
use initial intensity scales
flag: --iscalein %s
initial_timepoint: (an integer (int or long))
use TP# for spacial init (default random), 0: no init
flag: --inittp %d
initial_transforms: (a list of items which are an existing file name)
use initial transforms (lta) on source
flag: --ixforms %s
intensity_scaling: (a boolean)
allow also intensity scaling (default off)
flag: --iscale
no_iteration: (a boolean)
do not iterate, just create first template
flag: --noit
scaled_intensity_outputs: (a list of items which are a file name)
final intensity scales (will activate --iscale)
flag: --iscaleout %s
subjects_dir: (an existing directory name)
subjects directory
subsample_threshold: (an integer (int or long))
subsample if dim > # on all axes (default no subs.)
flag: --subsample %d
terminal_output: (u'stream' or u'allatonce' or u'file' or u'none')
Control terminal output: `stream` - displays to terminal immediately
(default), `allatonce` - waits till command is finished to display
output, `file` - writes output to file, `none` - output is ignored
transform_outputs: (a list of items which are a file name)
output xforms to template (for each input)
flag: --lta %s
Outputs:
out_file: (an existing file name)
output template volume (final mean/median image)
scaled_intensity_outputs: (a list of items which are an existing file
name)
output final intensity scales
transform_outputs: (a list of items which are an existing file name)
output xform files from moving to template