interfaces.dipy.reconstruction¶
CSD¶
Uses CSD [Tournier2007] to generate the fODF of DWIs. The interface uses
dipy
, as explained in dipy’s CSD example.
[Tournier2007] | Tournier, J.D., et al. NeuroImage 2007. Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution |
Example¶
>>> from nipype.interfaces import dipy as ndp
>>> csd = ndp.CSD()
>>> csd.inputs.in_file = '4d_dwi.nii'
>>> csd.inputs.in_bval = 'bvals'
>>> csd.inputs.in_bvec = 'bvecs'
>>> res = csd.run()
Inputs:
[Mandatory]
in_bval: (an existing file name)
input b-values table
in_bvec: (an existing file name)
input b-vectors table
in_file: (an existing file name)
input diffusion data
[Optional]
b0_thres: (an integer (int or long), nipype default value: 700)
b0 threshold
ignore_exception: (a boolean, nipype default value: False)
Print an error message instead of throwing an exception in case the
interface fails to run
in_mask: (an existing file name)
input mask in which compute tensors
out_fods: (a file name)
fODFs output file name
out_prefix: (a unicode string)
output prefix for file names
response: (an existing file name)
single fiber estimated response
save_fods: (a boolean, nipype default value: True)
save fODFs in file
sh_order: (an integer (int or long), nipype default value: 8)
maximal shperical harmonics order
Outputs:
model: (a file name)
Python pickled object of the CSD model fitted.
out_fods: (a file name)
fODFs output file name
EstimateResponseSH¶
Uses dipy to compute the single fiber response to be used in spherical
deconvolution methods, in a similar way to MRTrix’s command
estimate_response
.
Example¶
>>> from nipype.interfaces import dipy as ndp
>>> dti = ndp.EstimateResponseSH()
>>> dti.inputs.in_file = '4d_dwi.nii'
>>> dti.inputs.in_bval = 'bvals'
>>> dti.inputs.in_bvec = 'bvecs'
>>> dti.inputs.in_evals = 'dwi_evals.nii'
>>> res = dti.run()
Inputs:
[Mandatory]
in_bval: (an existing file name)
input b-values table
in_bvec: (an existing file name)
input b-vectors table
in_evals: (an existing file name)
input eigenvalues file
in_file: (an existing file name)
input diffusion data
[Optional]
auto: (a boolean, nipype default value: True)
use the auto_response estimator from dipy
mutually_exclusive: recursive
b0_thres: (an integer (int or long), nipype default value: 700)
b0 threshold
fa_thresh: (a float, nipype default value: 0.7)
FA threshold
ignore_exception: (a boolean, nipype default value: False)
Print an error message instead of throwing an exception in case the
interface fails to run
in_mask: (an existing file name)
input mask in which we find single fibers
out_mask: (a file name, nipype default value: wm_mask.nii.gz)
computed wm mask
out_prefix: (a unicode string)
output prefix for file names
recursive: (a boolean, nipype default value: False)
use the recursive response estimator from dipy
mutually_exclusive: auto
response: (a file name, nipype default value: response.txt)
the output response file
roi_radius: (an integer (int or long), nipype default value: 10)
ROI radius to be used in auto_response
Outputs:
out_mask: (an existing file name)
output wm mask
response: (an existing file name)
the response file
RESTORE¶
Uses RESTORE [Chang2005] to perform DTI fitting with outlier detection.
The interface uses dipy
, as explained in dipy’s documentation.
[Chang2005] | Chang, LC, Jones, DK and Pierpaoli, C. RESTORE: robust estimation of tensors by outlier rejection. MRM, 53:1088-95, (2005). |
Example¶
>>> from nipype.interfaces import dipy as ndp
>>> dti = ndp.RESTORE()
>>> dti.inputs.in_file = '4d_dwi.nii'
>>> dti.inputs.in_bval = 'bvals'
>>> dti.inputs.in_bvec = 'bvecs'
>>> res = dti.run()
Inputs:
[Mandatory]
in_bval: (an existing file name)
input b-values table
in_bvec: (an existing file name)
input b-vectors table
in_file: (an existing file name)
input diffusion data
[Optional]
b0_thres: (an integer (int or long), nipype default value: 700)
b0 threshold
ignore_exception: (a boolean, nipype default value: False)
Print an error message instead of throwing an exception in case the
interface fails to run
in_mask: (an existing file name)
input mask in which compute tensors
noise_mask: (an existing file name)
input mask in which compute noise variance
out_prefix: (a unicode string)
output prefix for file names
Outputs:
evals: (a file name)
output the eigenvalues of the fitted DTI
evecs: (a file name)
output the eigenvectors of the fitted DTI
fa: (a file name)
output fractional anisotropy (FA) map computed from the fitted DTI
md: (a file name)
output mean diffusivity (MD) map computed from the fitted DTI
mode: (a file name)
output mode (MO) map computed from the fitted DTI
rd: (a file name)
output radial diffusivity (RD) map computed from the fitted DTI
trace: (a file name)
output the tensor trace map computed from the fitted DTI