neuromΒΆ
NeuroM neurom morphology analysis package
Examples
Load a neuron
>>> import neurom as nm
>>> nrn = nm.load_neuron('some/data/path/morph_file.swc')
Obtain some morphometrics using the get function
>>> ap_seg_len = nm.get('segment_lengths', nrn, neurite_type=nm.APICAL_DENDRITE)
>>> ax_sec_len = nm.get('section_lengths', nrn, neurite_type=nm.AXON)
Load neurons from a directory. This loads all SWC, HDF5 or NeuroLucida .asc files it finds and returns a list of neurons
>>> import numpy as np # For mean value calculation
>>> nrns = nm.load_neurons('some/data/directory')
>>> for nrn in nrns:
... print 'mean section length', np.mean(nm.get('section_lengths', nrn))
Apply a function to a selection of neurites in a neuron or population. This example gets the number of points in each axon in a neuron population
>>> import neurom as nm
>>> filter = lambda n : n.type == nm.AXON
>>> mapping = lambda n : len(n.points)
>>> n_points = [n for n in nm.iter_neurites(nrns, mapping, filter)]
Functions
get |
Obtain a feature from a set of morphology objects |
iter_neurites |
Iterator to a neurite, neuron or neuron population |
iter_sections |
Iterator to the sections in a neurite, neuron or neuron population. |
iter_segments |
Return an iterator to the segments in a collection of neurites |
load_neuron |
Build section trees from an h5 or swc file |
load_neurons |
Create a population object from all morphologies in a directory of from morphologies in a list of file names |
Classes
NeuriteType |
Enum representing valid tree types |
NeuronLoader |
Caching morphology loader. |