Trees | Indices | Help |
---|
|
1 #!/usr/bin/env python 2 3 #! This file is a literate Python program. You can compile the documentation 4 #! using mylit (http://pypi.python.org/pypi/mylit/). 5 ## title = "glitter Example: OpenCL" 6 ## stylesheet = "pygments_style.css" 7 8 # <h1><i>glitter</i> Example: OpenCL</h1> 9 10 # <h2>Summary</h2> 11 12 # This program will open a GLUT window and render an animated particle 13 # simulation. The particle simulation is computed in OpenCL, and the results 14 # are written directly to an OpenGL array buffer. 15 16 # <img src="opencl.png"> 17 18 # <h2>Front matter</h2> 19 20 # <h3>Module docstring</h3> 21 22 # The module docstring is used as a description of this example in the 23 # generated documentation: 24 """Basic OpenGL/OpenCL interoperability example. 25 26 @author: Stephan Wenger 27 @date: 2012-02-29 28 """ 29 30 # <h3>Imports</h3> 31 32 # We use numpy for creating the particle data: 33 import numpy 34 35 # <a href="http://mathema.tician.de/software/pyopencl">PyOpenCL</a> (<a 36 # href="http://documen.tician.de/pyopencl/">documentation</a>, <a 37 # href="http://pypi.python.org/pypi/pyopencl">PyPi</a>, <a 38 # href="http://sourceforge.net/projects/pyopencl/">download</a>) is a 39 # convenient Python wrapper for OpenCL: 40 import pyopencl as cl 41 42 # For creating an OpenCL context that shares data with OpenGL, we need 43 # <code>get_gl_sharing_context_properties</code>: 44 from pyopencl.tools import get_gl_sharing_context_properties 45 46 # We can usually import classes and functions contained in <i>glitter</i> 47 # submodules directly from glitter: 48 from glitter import ArrayBuffer, VertexArray, get_default_program 49 50 # Modules with external dependencies other than numpy, such as platform 51 # dependent parts like methods for the generation of an OpenGL context, 52 # however, have to be imported from their respective submodules: 53 from glitter.contexts.glut import GlutWindow, main_loop 54 55 # <h2>OpenCL</h2> 56 57 # <h3>OpenCL kernel</h3> 58 59 # The OpenCL kernel (adapted from a <a 60 # href="http://www.cmsoft.com.br/index.php?option=com_content&view=category&layout=blog&id=99&Itemid=150">CMSoft 61 # tutorial</a>) computes a single iteration of a simple Eulerian particle 62 # simulation. Kernel code can be loaded from a file or defined inline as a 63 # Python string: 64 kernel_code = """ 65 __kernel void animate(__global float4* positions, 66 __global float4* colors, 67 __global float4* velocities, 68 __global float4* initial_positions, 69 __global float4* initial_velocities, 70 float dt) { 71 unsigned int i = get_global_id(0); 72 float4 p = positions[i]; 73 float4 v = velocities[i]; 74 float life = velocities[i].w; 75 76 life -= dt; 77 if (life <= 0.0) { 78 p = initial_positions[i]; 79 v = initial_velocities[i]; 80 life = 1.0; 81 } 82 83 v.z -= 9.8 * dt; 84 p.xyz += v.xyz * dt; 85 v.w = life; 86 87 positions[i] = p; 88 velocities[i] = v; 89 colors[i].w = life; 90 } 91 """ 92 93 # <h3>OpenCL interaction</h3> 94 95 # The <code>CLCode</code> class will comprise all OpenCL interaction:97 # <h4>Initialization</h4> 98 # The constructor receives OpenGL buffers for positions and colors as well 99 # as a numpy array of velocities and a timestep for the simulation:164 165 # <h2>Main class</h2> 166 167 # We wrap all the OpenGL interaction in a class. The class will contain an 168 # <code>__init__()</code> method to set up all OpenGL objects, any required 169 # callback methods, as well as a <code>run()</code> method to trigger execution 170 # of the GLUT main loop.101 # First, we have to initialize the OpenCL context. That means we have 102 # to get a list of available platforms and select one: 103 platform = cl.get_platforms()[0] 104 # Then, we can create a context. Passing 105 # <code>get_gl_sharing_context_properties()</code> as a property 106 # ensures that we share state with the active OpenGL context: 107 self.ctx = cl.Context(properties=[(cl.context_properties.PLATFORM, platform)] + 108 get_gl_sharing_context_properties(), devices=None) 109 # A command queue is necessary for serializing OpenCL commands: 110 self.queue = cl.CommandQueue(self.ctx) 111 # Finally, we can compile the kernel: 112 self.program = cl.Program(self.ctx, kernel_code).build() 113 114 # The constructor parameters are stored for later use: 115 self.gl_positions = gl_positions 116 self.gl_colors = gl_colors 117 self.velocities = velocities 118 # The <code>dt</code> value will later be passed to an OpenCL kernel as 119 # a 32-bit float. We therefore wrap it in a numpy <code>float32</code> 120 # object: 121 self.dt = numpy.float32(dt) 122 123 # Next, we generate OpenCL buffers. The positions and colors are 124 # contained in OpenGL buffers, which we wrap in PyOpenCL's 125 # <code>GLBuffer<(/code> class: 126 self.cl_positions = cl.GLBuffer(self.ctx, cl.mem_flags.READ_WRITE, self.gl_positions._id) 127 self.cl_colors = cl.GLBuffer(self.ctx, cl.mem_flags.READ_WRITE, self.gl_colors._id) 128 # Note how we had to extract the <code>_id</code>s from the 129 # <code>ArrayBuffer</code> objects. In pure <i>glitter</i> code, you 130 # should never (have to) access this value; however for interaction 131 # with other OpenGL-related libraries, this cannot always be avoided. 132 133 # The velocities are given as a numpy array, which is simply uploaded 134 # into a new OpenCL <code>Buffer</code> object along with the initial 135 # values of the positions and colors: 136 self.cl_velocities = cl.Buffer(self.ctx, cl.mem_flags.READ_ONLY | 137 cl.mem_flags.COPY_HOST_PTR, hostbuf=velocities) 138 self.cl_initial_positions = cl.Buffer(self.ctx, cl.mem_flags.READ_ONLY | 139 cl.mem_flags.COPY_HOST_PTR, hostbuf=self.gl_positions.data) 140 self.cl_initial_velocities = cl.Buffer(self.ctx, cl.mem_flags.READ_ONLY | 141 cl.mem_flags.COPY_HOST_PTR, hostbuf=self.velocities)142 143 # <h4>Execution</h4> 144 # The <code>execute</code> function executes the OpenCL kernel several 145 # times in a row:147 # First, we have to make sure that OpenGL is done using the buffer objects: 148 cl.enqueue_acquire_gl_objects(self.queue, [self.cl_positions, self.cl_colors]) 149 # Now, we can safely call the kernel. Its arguments are buffer objects: 150 args = (self.cl_positions, self.cl_colors, self.cl_velocities, 151 self.cl_initial_positions, self.cl_initial_velocities, self.dt) 152 # The kernel will be executed several times with a small step size. 153 # This increases the accuracy with respect to a single step with a 154 # large step size. However, it is not necessary to display all the 155 # intermediate results. 156 for i in xrange(0, sub_intervals): 157 # In each step, the <code>animate</code> kernel function is called. 158 # Its arguments are the queue object that schedules its execution, 159 # the global and local block sizes, and any arguments that will be 160 # passed to the actual kernel. 161 self.program.animate(self.queue, [len(self.gl_positions)], None, *args) 162 # Finally, we allow OpenGL to access the buffers again: 163 cl.enqueue_release_gl_objects(self.queue, [self.cl_positions, self.cl_colors])172 # <h3>Initialization</h3> 173 174 # When a <code>OpenCLExample</code> instance is created, we need to 175 # initialize a few OpenGL objects.277 278 # When the main loop exits, control is handed back to the script, 279 # unless <code>SystemExit</code> has been raised by the keyboard 280 # handler. 281 282 # <h2>Main section</h2> 283 284 # Finally, if this program is being run from the command line, we instanciate 285 # the main class and run it. 286 if __name__ == "__main__": 287 OpenCLExample().run() 288177 # First, we create a window; this also creates an OpenGL context. 178 self.window = GlutWindow(double=True, alpha=True, depth=True) 179 180 # Then, we set the GLUT display and keyboard callback functions which 181 # will be defined later. 182 self.window.display_callback = self.display 183 self.window.keyboard_callback = self.keyboard 184 185 # Here, we generate numpy arrays to hold the positions, colors, and 186 # velocities of the particles: 187 num = 200000 188 positions = numpy.empty((num, 4), dtype=numpy.float32) 189 colors = numpy.empty((num, 4), dtype=numpy.float32) 190 velocities = numpy.empty((num, 4), dtype=numpy.float32) 191 192 # So far, the array contents are undefined. We have to initialize them with meaningful values: 193 positions[:, 0] = numpy.sin(numpy.arange(0, num) * 2 * numpy.pi / num) * (numpy.random.random_sample((num,)) / 3 + 0.2) 194 positions[:, 1] = numpy.cos(numpy.arange(0, num) * 2 * numpy.pi / num) * (numpy.random.random_sample((num,)) / 3 + 0.2) 195 positions[:, 2:] = 0, 1 196 colors[:] = 0, 1, 0, 1 197 velocities[:, :2] = 2 * positions[:, :2] 198 velocities[:, 2] = 3 199 velocities[:, 3] = numpy.random.random_sample((num,)) 200 201 # Instead of simply generating a vertex array from the position and color 202 # data, we first generate array buffers for them: 203 gl_positions = ArrayBuffer(data=positions, usage="DYNAMIC_DRAW") 204 gl_colors = ArrayBuffer(data=colors, usage="DYNAMIC_DRAW") 205 # These array buffers will later also be used by OpenCL. We do not need to 206 # wrap <code>velocities</code> in this way, as it will only be used by 207 # OpenCL and can be wrapped in an OpenCL buffer directly. 208 209 # We now create a vertex array that will pass the position and color data 210 # to the shader. The vertex array constructor accepts 211 # <code>ArrayBuffer</code> instances: 212 self.vao = VertexArray(gl_positions, gl_colors) 213 214 # In the OpenGL core profile, there is no such thing as a "standard pipeline" 215 # any more. We use the minimalistic <code>defaultpipeline</code> from the 216 # <code>glitter.convenience</code> module to create a shader program instead: 217 self.shader = get_default_program() 218 219 # Here, we create the <code>CLCode</code> object that manages OpenCL 220 # interaction. It is passed the OpenGL buffer objects as well as a numpy 221 # array of velocities. 222 self.clcode = CLCode(gl_positions, gl_colors, velocities)223 224 # <h3>Callback functions</h3> 225 226 # <h4>Display function</h4> 227 228 # Here we define the display function. It will be called by GLUT whenever the 229 # screen has to be redrawn.231 # First we clear the default framebuffer: 232 self.window.clear() 233 234 # To draw the vertex array, we use: 235 self.vao.draw() 236 237 # After all rendering commands have been issued, we swap the back buffer to 238 # the front, making the rendered image visible all at once: 239 self.window.swap_buffers()240 241 # <h4>Timer function</h4> 242 243 # The animation is controlled by a GLUT timer. The timer callback animates the 244 # particle system, schedules the next timer event, and causes a screen redraw:246 # We first tell an instance of the <code>CLCode</code> class to execute the 247 # OpenCL kernel: 248 self.clcode.execute(10) 249 250 # The following line schedules the next timer event to execute after one millisecond. 251 self.window.add_timer(1, self.timer) 252 253 # Finally, we tell GLUT to redraw the screen. 254 self.window.post_redisplay()255 256 # <h4>Keyboard function</h4> 257 258 # To further illustrate the concept of GLUT callbacks, here's a keyboard 259 # handler that will simply make the program exit when any key is pressed: 262 263 # <h3>Running</h3> 264 265 # We will call the <code>run()</code> method later to run the OpenGL code.267 # To start the animation, we call the timer once; all subsequent timer 268 # calls will be scheduled by the timer function itself. 269 self.timer() 270 271 # The default program is bound by using a <code>with</code> statement. At 272 # the same time, we can pass in additional uniform variables, such as the 273 # modelview matrix: 274 with self.shader(modelview_matrix=((1, 0, 0, 0), (0, 0, 1, 0), (0, 1, 0, 0), (0, 0, 0, 2))): 275 # With the shader bound, we enter the GLUT main loop. 276 main_loop()
Trees | Indices | Help |
---|
Generated by Epydoc 3.0.1 on Fri Mar 16 17:56:05 2012 | http://epydoc.sourceforge.net |