Trees | Indices | Help |
---|
|
1 #!/usr/bin/env python 2 3 #! This file is a literate Python program. You can compile the documentation 4 #! using mylit (http://pypi.python.org/pypi/mylit/). 5 ## title = "glitter Example: Mesh Viewer" 6 ## stylesheet = "pygments_style.css" 7 8 # <h1><i>glitter</i> Example: Mesh Viewer</h1> 9 10 # <h2>Summary</h2> 11 12 # This program will open a GLUT window and render a mesh from an <a 13 # href="www.hdfgroup.org/HDF5/">HDF5</a> data file. 14 15 # <img src="meshview.png"> 16 17 # <h2>Front matter</h2> 18 19 # <h3>Module docstring</h3> 20 21 # The module docstring is used as a description of this example in the 22 # generated documentation: 23 """Simple mesh viewer. 24 25 @author: Stephan Wenger 26 @date: 2012-02-29 27 """ 28 29 # <h3>Imports</h3> 30 31 # Our scene is going to rotate. The rotating modelview matrix is computed using 32 # the sine and cosine functions from the math module: 33 from math import sin, cos, pi 34 35 # <i>glitter</i> uses <a href="http://numpy.scipy.org/">numpy</a> for 36 # representation of array data. We will use numpy's <code>random()</code> 37 # function to generate random textures: 38 from numpy.random import random 39 40 # We need to read a mesh filename from <code>sys.argv</code>, so import 41 # <code>sys</code>. 42 import sys 43 44 # We assume the mesh is stored in a <a 45 # href="http://www.hdfgroup.org/HDF5/">HDF5</a> file, so import <a 46 # href="h5py.alfven.org"><code>h5py</code></a>. 47 import h5py 48 49 # We can usually import classes and functions contained in <i>glitter</i> 50 # submodules directly from glitter: 51 from glitter import VertexArray, State, get_default_program 52 53 # Modules with external dependencies other than numpy, such as platform 54 # dependent parts like methods for the generation of an OpenGL context, 55 # however, have to be imported from their respective submodules: 56 from glitter.contexts.glut import GlutWindow, main_loop, get_elapsed_time 57 58 # <h2>Main class</h2> 59 60 # We wrap all the OpenGL interaction in a class. The class will contain an 61 # <code>__init__()</code> method to set up all OpenGL objects, any required 62 # callback methods, as well as a <code>run()</code> method to trigger execution 63 # of the GLUT main loop.65 # <h3>Initialization</h3> 66 67 # When a <code>MeshViewer</code> instance is created, we need to 68 # initialize a few OpenGL objects.154 155 # When the main loop exits, control is handed back to the script. 156 157 # <h2>Main section</h2> 158 159 # Finally, if this program is being run from the command line, we instanciate 160 # the main class and run it. 161 if __name__ == "__main__": 162 MeshViewer().run() 16370 # First, we create a window; this also creates an OpenGL context. 71 self.window = GlutWindow(double=True, multisample=True) 72 73 # Then, we set the GLUT display callback function which will be defined later. 74 self.window.display_callback = self.display 75 76 # In the OpenGL core profile, there is no such thing as a "standard pipeline" 77 # any more. We use the minimalistic <code>defaultpipeline</code> from the 78 # <code>glitter.convenience</code> module to create a shader program instead: 79 self.shader = get_default_program() 80 81 # We open the HDF5 file specified on the command line for reading: 82 with h5py.File(sys.argv[1], "r") as f: 83 # The vertices, colors and indices of the mesh are read from the 84 # corresponding datasets in the HDF5 file. Note that the names of the 85 # datasets are mere convention. Colors and indices are allowed to be 86 # undefined. 87 vertices = f["vertices"] 88 colors = f.get("colors", None) 89 elements = f.get("indices", None) 90 91 # If no colors were specified, we generate random ones so we can 92 # distinguish the triangles without fancy shading. 93 if colors is None: 94 colors = random((len(vertices), 3))[:, None, :][:, [0] * vertices.shape[1], :] 95 96 # Here, we create a vertex array that contains buffers for two vertex array 97 # input variables as well as an index array. If <code>elements</code> 98 # is <code>None</code>, the vertex array class will draw all vertices 99 # in order. 100 self.vao = VertexArray(vertices, colors, elements=elements)101 102 # <h3>Callback functions</h3> 103 104 # <h4>Display function</h4> 105 106 # Here we define the display function. It will be called by GLUT whenever the 107 # screen has to be redrawn.109 # First we clear the default framebuffer: 110 self.window.clear() 111 112 # To draw the vertex array, we use: 113 self.vao.draw() 114 115 # After all rendering commands have been issued, we swap the back buffer to 116 # the front, making the rendered image visible all at once: 117 self.window.swap_buffers()118 119 # <h4>Timer function</h4> 120 121 # The animation is controlled by a GLUT timer. The timer callback changes the 122 # modelview matrix, schedules the next timer event, and causes a screen redraw:124 # We first get the elapsed time from GLUT using <code>get_elapsed_time()</code>: 125 phi = 2 * pi * get_elapsed_time() / 20.0 126 127 # We then set the <code>modelview_matrix</code> uniform variable of the 128 # shader simply by setting an attribute: 129 self.shader.modelview_matrix = ((cos(phi), 0, sin(phi), 0), (0, 1, 0, 0), (-sin(phi), 0, cos(phi), 0), (0, 0, 0, 1)) 130 131 # The following line schedules the next timer event to execute after ten milliseconds. 132 self.window.add_timer(10, self.timer) 133 134 # Finally, we tell GLUT to redraw the screen. 135 self.window.post_redisplay()136 137 # <h3>Running</h3> 138 139 # We will call the <code>run()</code> method later to run the OpenGL code.141 # To start the animation, we call the timer once; all subsequent timer 142 # calls will be scheduled by the timer function itself. 143 self.timer() 144 145 # The shader program is bound by using a <code>with</code> statement: 146 with self.shader: 147 # The <code>State</code> class encapsulates state changes in the 148 # context. For example, to enable depth testing for the duration of the 149 # following function call, we would write: 150 with State(depth_test=True): 151 # With the shader bound and depth testing enabled, we enter the 152 # GLUT main loop. 153 main_loop()
Trees | Indices | Help |
---|
Generated by Epydoc 3.0.1 on Fri Mar 16 17:56:05 2012 | http://epydoc.sourceforge.net |