The simplex solver control parameter object
>>> r = SimplexControls()
Iteration limit, an int
>>> r.it_lim # the GLPK default
2147483647
>>> r.it_lim = 10
>>> r.it_lim
10
The simplex method, a str
The possible values are
>>> r.meth # the GLPK default
'primal'
>>> r.meth = 'dual_fail_primal'
>>> r.meth
'dual_fail_primal'
The message level, a str
The possible values are
>>> r.msg_lev # the GLPK default
'full'
>>> r.msg_lev = 'no'
>>> r.msg_lev
'no'
Lower limit of the objective function, a Real number
(Used only if meth is 'dual'.)
>>> r.obj_ll # the GLPK default
-1.7976931348623157e+308
>>> r.obj_ll = -1234.0
>>> r.obj_ll
-1234.0
Upper limit of the objective function, a Real number
(Used only if meth is 'dual'.)
>>> r.obj_ul # the GLPK default
1.7976931348623157e+308
>>> r.obj_ul = 123.4
>>> r.obj_ul
123.4
Output delay [ms] of solution process information, an int
>>> r.out_dly # the GLPK default
0
>>> r.out_dly = 25
>>> r.out_dly
25
Output frequency [iterations] of informational messages, an int
>>> r.out_frq # the GLPK default
500
>>> r.out_frq = 50
>>> r.out_frq
50
Whether to use the LP presolver, a bool
>>> r.presolve # the GLPK default
False
>>> r.presolve = True
>>> r.presolve
True
The pricing technique, a str
The possible values are
>>> r.pricing # the GLPK default
'steepest'
>>> r.pricing = 'Dantzig'
>>> r.pricing
'Dantzig'
The ratio test technique, a str
The possible values are
>>> r.r_test # the GLPK default
'Harris'
>>> r.r_test = 'standard'
>>> r.r_test
'standard'
Time limit [ms], an int
>>> r.tm_lim # the GLPK default
2147483647
>>> r.tm_lim = 1e7
>>> r.tm_lim
10000000
Tolerance to check if the solution is primal feasible, a Real number
>>> r.tol_bnd # the GLPK default
1e-07
>>> r.tol_bnd = 0.2
>>> r.tol_bnd
0.2