Package dimer :: Package nnet
[hide private]
[frames] | no frames]

Package nnet

source code

abstract classes for deep models

Submodules [hide private]

Classes [hide private]
  Layer
abstract layer class.
  Model
generic model class with basic functionality
  SpeedLayer
This layer provides an extra set of weights as a support the momentum algorithm for SGD.
Functions [hide private]
 
__spec_cls__(t) source code
 
adjust_lr(err, lrmax)
adjust error rate for the next batch
source code
 
alloc_shared_weights_(shape, dtype, name, fan_in, rng)
alloc a matrix of weights and return a theano shared variable Note : optimal initialization of weights is dependent on the activation function used (among other things).
source code
 
fit_data(x)
transform each component of X so that it fits on an interval [-1, 1]
source code
 
scale_data(x)
transform each component of X so that it has unit variance
source code
 
shift_data(x)
transform each component of X so that it has zero mean
source code
 
verbose_compile(func)
decorator that explains what is being theano-compiled, by logging the functions __doc__
source code
Variables [hide private]
  __package__ = 'dimer.nnet'
  log = <logging.Logger object at 0x10dded210>
  spec_list = [<class 'dimer.nnet.config_spec.AESpec'>, <class '...
Function Details [hide private]

alloc_shared_weights_(shape, dtype, name, fan_in, rng)

source code 

alloc a matrix of weights and return a theano shared variable Note : optimal initialization of weights is dependent on the activation function used (among other things). Here I replicate http://www.deeplearning.net/tutorial/mlp.html#mlp

fit_data(x)

source code 

transform each component of X so that it fits on an interval [-1, 1]

Parameters:
  • x - a pandas data panel of the form <anchors> X <tracks> X <genome position>
Returns:
(the scaled input, the std for each input component. this is an array of shape(<tracks>, <genome position>))

scale_data(x)

source code 

transform each component of X so that it has unit variance

Parameters:
  • x - a pandas data panel of the form <anchors> X <tracks> X <genome position>
Returns:
(the scaled input, the std for each input component. this is an array of shape(<tracks>, <genome position>))

shift_data(x)

source code 

transform each component of X so that it has zero mean

x: a pandas data panel of the form <anchors> X <tracks> X <genome position> return: (the shifted input, the mean for each input component. this is an array of shape(<tracks>, <genome position>))


Variables Details [hide private]

spec_list

Value:
[<class 'dimer.nnet.config_spec.AESpec'>,
 <class 'dimer.nnet.config_spec.DataSpec'>,
 <class 'dimer.nnet.config_spec.ModelSpec'>,
 <class 'dimer.nnet.config_spec.MtrainSpec'>]