C and C++ API¶
This section includes information for using the pure C or C++ API for
manipulating bob.blitz objects in compiled code.
C API¶
The C API of bob.blitz allows users to leverage from automatic converters
between numpy.ndarray and bob.blitz.array within their
own python extensions. To use the C API, clients should first, include the
header file <bob.blitz/capi.h> on their compilation units and then, make
sure to call once import_bob_blitz() at their module instantiation, as
explained at the Python manual.
Here is a dummy C example showing how to include the header and where to call the import function:
#include <bob.blitz/capi.h>
PyMODINIT_FUNC initclient(void) {
PyObject* m Py_InitModule("client", ClientMethods);
if (!m) return;
// imports dependencies
if (import_bob_blitz() < 0) {
PyErr_Print();
PyErr_SetString(PyExc_ImportError, "cannot import module");
return 0;
}
return m;
}
Array Structure¶
-
type
PyBlitzArrayObject¶
-
PyBlitzArrayObject¶ The basic array structure represents a
bob.blitz.arrayinstance from the C-side of the interpreter. You should avoid direct access to the structure components (it is presented just as an overview on the functionality). Instead, use the accessor methods described below.typedef struct { PyObject_HEAD void* bzarr; void* data; int type_num; Py_ssize_t ndim; Py_ssize_t shape[BLITZ_ARRAY_MAXDIMS]; Py_ssize_t stride[BLITZ_ARRAY_MAXDIMS]; int writeable; PyObject* base; } PyBlitzArrayObject;
-
BLITZ_ARRAY_MAXDIMS¶ The maximum number of dimensions supported by the current
bob.blitz.arrayimplementation.
-
void*
bzarr¶ This is a pointer that points to the allocated
blitz::Arraystructure. This pointer is cast to the proper type and number of dimensions when operations on the data are requested.
-
void*
data¶ A pointer to the data entry in the
blitz::Array<>. This is equivalent to the operationblitz::Array<>::data().
-
int
type_num¶ The numpy type number that is compatible with the elements of this array. It is a C representation of the C++ template parameter
T. Only some types are current supported, namely:C/C++ type Numpy Enum Notes boolNPY_BOOLuint8_tNPY_UINT8uint16_tNPY_UINT16uint32_tNPY_UINT32uint64_tNPY_UINT64int8_tNPY_INT8int16_tNPY_INT16int32_tNPY_INT32int64_tNPY_INT64floatNPY_FLOAT32doubleNPY_FLOAT64long doubleNPY_FLOAT128Plat. Dependent std::complex<float>NPY_COMPLEX64std::complex<double>NPY_COMPLEX128std::complex<long double>NPY_COMPLEX256Plat. Dependent
-
Py_ssize_t
ndim¶ The rank of the
blitz::Array<>allocated onbzarr.
-
Py_ssize_t shape[BLITZ_ARRAY_MAXDIMS] The shape of the
blitz::Array<>allocated onbzarr, in number of elements in each dimension.
-
Py_ssize_t stride[BLITZ_ARRAY_MAXDIMS] The strides of the
blitz::Array<>allocated onbzarr, in number of bytes to jump to read the next element in each dimensions.
-
int
writeable¶ Assumes the value of
1(true), if the data is read-write.0is set otherwise.
-
Basic Properties and Checking¶
-
int
PyBlitzArray_Check(PyObject* o)¶ Checks if the input object
ois aPyBlitzArrayObject. Returns1if it is, and0otherwise.
-
int
PyBlitzArray_CheckNumpyBase(PyArrayObject* o)¶ Checks if the input object
ois aPyArrayObject(i.e. anumpy.ndarray), if so, checks if the base of the object is set and that it corresponds to the currentPyArrayObjectshape and stride settings. If so, returns1. It returns0otherwise.
-
int
PyBlitzArray_TYPE(PyBlitzArrayObject* o)¶ Returns integral type number (as defined by the Numpy C-API) of elements in this blitz::Array<>. This is the formal method to query for
o->type_num.
-
PyArray_Descr*
PyBlitzArray_PyDTYPE(PyBlitzArrayObject* o)¶ Returns a new reference to a numpy C-API
PyArray_Descr*equivalent to the internal type element T.
-
Py_ssize_t
PyBlitzArray_NDIM(PyBlitzArrayObject* o)¶ Returns the number of dimensions in a given
bob.blitz.array. This is the formal way to check foro->ndim.
-
Py_ssize_t*
PyBlitzArray_SHAPE(PyBlitzArrayObject* o)¶ Returns the C-stype shape for this blitz::Array<>. This is the formal method to query for
o->shape. The shape represents the number of elements in each dimension of the array.
-
PyObject*
PyBlitzArray_PySHAPE(PyBlitzArrayObject* o)¶ Returns a new reference to a Python tuple holding a copy of the shape for the given array. The shape represents the number of elements in each dimension of the array.
-
Py_ssize_t*
PyBlitzArray_STRIDE(PyBlitzArrayObject* o)¶ Returns the C-stype stride for this blitz::Array<>. This is the formal method to query for
o->stride. The strides in this object are represented in number of bytes and not in number of elements considering itstype_num. This is compatible with thenumpy.ndarraystrategy.
-
PyObject*
PyBlitzArray_PySTRIDE(PyBlitzArrayObject* o)¶ Returns a new reference to a Python tuple holding a copy of the strides for the given array. The strides in this object are represented in number of bytes and not in number of elements considering its
type_num. This is compatible with thenumpy.ndarraystrategy.
-
int
PyBlitzArray_WRITEABLE(PyBlitzArrayObject* o)¶ Returns
1if the object is writeable,0otherwise. This is the formal way to check foro->writeable.
-
PyObject*
PyBlitzArray_PyWRITEABLE(PyBlitzArrayObject* o)¶ Returns
Trueif the object is writeable,Falseotherwise.
-
PyObject*
PyBlitzArray_BASE(PyBlitzArrayObject* o)¶ Returns a borrowed reference to the base of this object. The return value of this function may be
NULL.
-
PyObject*
PyBlitzArray_PyBASE(PyBlitzArrayObject* o)¶ Returns a new reference to the base of this object. If the internal
o->baseisNULL, then returnsPy_None. Use this when interfacing with the Python interpreter.
Indexing¶
-
PyObject*
PyBlitzArray_GetItem(PyBlitzArrayObject* o, Py_ssize_t* pos)¶ Returns, as a PyObject, an item from the array. This will be a copy of the internal item. If you set it, it won’t set the original array.
oshould be the PyBlitzArrayObject to be queried.posshould be a C-style array indicating the precise position to fetch. It is considered to have the same number of entries as the current array shape.
-
int
PyBlitzArray_SetItem(PyBlitzArrayObject* o, Py_ssize_t* pos, PyObject* value)¶ Sets an given position on the array using any Python or numpy scalar.
oshould be the PyBlitzArrayObject to be set.posshould be a C-style array indicating the precise position to set andvalue, the Python or numpy scalar to set the value to.
Construction and Destruction¶
-
PyObject*
PyBlitzArray_New(PyTypeObject* type, PyObject *args, PyObject* kwds)¶ Allocates memory and pre-initializes a
PyBlitzArrayObject*object. This is the base allocator - seldomly used in user code.
-
void
PyBlitzArray_Delete(PyBlitzArrayObject* o)¶ Completely deletes a
PyBlitzArrayObject*and associated memory areas. This is the base deallocator - seldomly used in user code.
-
PyObject*
PyBlitzArray_SimpleNew(int typenum, Py_ssize_t ndim, Py_ssize_t* shape)¶ Allocates a new
bob.blitzwith a given (supported) type and return it as a python object.typenumshould be set to the numpy type number of the array type (e.g.NPY_FLOAT64).ndimshould be set to the total number of dimensions the array should have.shapeshould be set to the array shape.
-
PyObject*
PyBlitzArray_SimpleNewFromData(int type_num, Py_ssize_t ndim, Py_ssize_t* shape, Py_ssize_t* stride, void* data, int writeable)¶ Allocates a new
bob.blitz.arraywith a given (supported) type and return it as a python object.typenumshould be set to the numpy type number of the array type (e.g.NPY_FLOAT64).ndimshould be set to the total number of dimensions the array should have.shapeshould be set to the array shape.strideshould be set to the array stride in the numpy style (in number of bits).datashould be a pointer to the begin of the data area.writeableindicates if the resulting array should be writeble (set it to1), or read-only (set it to0).The memory area pointed by
datais stolen from the user, which should not delete it anymore.
-
int
PyBlitzArray_SimpleInit(PyBlitzArrayObject* arr, int typenum, Py_ssize_t ndim, Py_ssize_t* shape)¶ Initializes the given
PyBlitzArrayObject*with a newblitz::Arrayof the given typenum, dimensionality and shape. SeePyBlitzArray_SimpleNew()for details on the parameters. This function does not check if the memory is already initialized. It returns 0 on success and -1 on failure.
To/From Numpy Converters¶
-
PyObject*
PyBlitzArray_AsNumpyArray(PyBlitzArrayObject* o, PyArrayDescr* dtype)¶ Creates a shallow copy of the given
bob.blitz.arrayas anumpy.ndarray. The argumentdtypemay be given, in which case if the current data type is not the same, then forces the creation of a copy conforming to the require data type, if possible. You may setdtypetoNULLin case you don’t mind the resulting data type.Returns a new reference.
-
PyObject*
PyBlitzArray_FromNumpyArray(PyObject* o)¶ Creates a new
bob.blitz.arrayfrom anumpy.ndarrayobject in a shallow manner.Returns a new reference.
-
PyObject*
PyBlitzArray_NUMPY_WRAP(PyObject* o)¶ Creates a shallow copy of the given
bob.blitz.arrayas anumpy.ndarray. This function is a shortcut replacement forPyBlitzArray_AsNumpyArray(). It can be used when the input objectois surely of typePyBlitzArrayObject. It creates a wrapperPyArrayObjectthat contains, as base, a stolen reference to the input objecto.It is designed like this so you can easily wrap freshly created objects of type
PyBlitzArrayObjectasPyArrayObject. It assumes the input object is of the right type and wrap-able as anumpy.ndarray. It does not check the objectbasevariable, assuming it is set toNULL(what is the case to freshly createdPyBlitzArrayObject‘s). If you are not sure about the nature ofo, use the slower but saferPyBlitzArray_AsNumpyArray().Note
The value of
ocan beNULL, in which case this function returns immediately, allowing you to propagate exceptions.
Converter Functions for PyArg_Parse* family¶
-
int
PyBlitzArray_Converter(PyObject* o, PyBlitzArrayObject** a)¶ This function is meant to be used with
PyArg_ParseTupleAndKeywords()family of functions in the Python C-API. It converts an arbitrary input object into aPyBlitzArrayObjectthat can be used as input into another function.You should use this converter when you don’t need to write-back into the input array. As any other standard Python converter, it returns a new reference to a
PyBlitzArrayObject.It works efficiently if the input array is already a
PyBlitzArrayObjector if it is aPyArrayObject(i.e., a :py:class:numpy.ndarray), with a matching base which is aPyBlitzArrayObject. Otherwise, it creates a newPyBlitzArrayObjectby first creating aPyArrayObjectand then shallow wrapping it with aPyBlitzArrayObject.Returns 0 if an error is detected, 1 on success.
-
int
PyBlitzArray_BehavedConverter(PyObject* o, PyBlitzArrayObject** a)¶ This function operates like
PyBlitzArray_Converter(), excepts it guarantees that the returned (underlying)blitz::Array<>object is wrapped around a well-behavednumpy.ndarrayobject (i.e. contiguous, memory-aligned, C-style).In the event the input object is already a
PyBlitzArrayObject, then a new reference to it is returned. It does not check, in this particular case, that the input object is well-behaved.Returns 0 if an error is detected, 1 on success.
-
int
PyBlitzArray_OutputConverter(PyObject* o, PyBlitzArrayObject** a)¶ This function is meant to be used with
PyArg_ParseTupleAndKeywords()family of functions in the Python C-API. It converts an arbitrary input object into aPyBlitzArrayObjectthat can be used as input/output or output into another function.You should use this converter when you need to write-back into the input array. The input type should be promptly convertible to a
numpy.ndarrayas withPyArray_OutputConverter(). As any other standard Python converter, it returns a new reference to aPyBlitzArrayObject*.Returns 0 if an error is detected, 1 on success.
-
int
PyBlitzArray_IndexConverter(PyObject* o, PyBlitzArrayObject** shape)¶ Converts any compatible sequence into a C-array containing the shape information. The shape information and number of dimensions is stored on the previously allocated
PyBlitzArrayObject*you should provide. This method is supposed to be used withPyArg_ParseTupleAndKeywordsand derivatives.Parameters are:
o- The input object to be converted into a C-shape
shape- A preallocated (double) address for storing the shape value, on successful conversion
Returns 0 if an error is detected, 1 on success.
-
int
PyBlitzArray_TypenumConverter(PyObject* o, int* type_num)¶ Converts any compatible value into a Numpy integer type number. This method is supposed to be used with
PyArg_ParseTupleAndKeywordsand derivatives.Parameters are:
o- The input object to be converted into a type number
type_num- An address for storing the type number on successful conversion.
Returns 0 if an error is detected, 1 on success.
Other Utilities¶
-
const char*
PyBlitzArray_TypenumAsString(int typenum)¶ Converts from numpy type_num to a string representation
-
PyObject*
PyBlitzArray_Cast(PyBlitzArrayObject* o, int typenum)¶ Casts a given Blitz++ Array into another data type, returns a new reference. If the underlying Blitz++ Array is already of the given type, then just increments the reference counter and returns.
If a problem is detected (e.g. the impossibility to cast to the desired type), then this function will return
NULL. You must check the return value and then take the appropriate action after calling this function.Note
Casting, as operated by this function, may incur in precision loss between the originating type and the destination type.
C++ API¶
The C++ API consists mostly of templated methods for manipulating the C++ type
blitz::Array<> so as to convert PyObject*‘s from and to objects of that
type. To use the C++ API you must include the header file
<bob.blitz/cppapi.h> and import_bob_blitz() on your module, as
explained on the C-API section of this document.
Basic Properties and Checking¶
Construction and Destruction¶
-
template<typename
T, intN> -
PyObject *
PyBlitzArrayCxx_NewFromConstArray(const blitz::Array<T, N> &a)¶ Builds a new read-only
PyBlitzArrayObjectfrom an existing Blitz++ array, without copying the data. Returns a new reference.
-
template<typename
T, intN> -
PyObject *
PyBlitzArrayCxx_NewFromArray(blitz::Array<T, N> &a)¶ Builds a new writeable
PyBlitzArrayObjectfrom an existing Blitz++ array, without copying the data. Returns a new reference.
-
template<typename
T, intN> -
PyObject *
PyBlitzArrayCxx_AsConstNumpy(const blitz::Array<T, N> &a)¶ Builds a new read-only
numpy.ndarrayobject from the given Blitz++ array without copying the data. Returns a new reference.In fact, it actually calls two of the above mentioned functions
PyBlitzArrayCxx_NewFromConstArray()andPyBlitzArray_NUMPY_WRAP():PyBlitzArray_NUMPY_WRAP(PyBlitzArrayCxx_NewFromConstArray(a));
-
template<typename
T, intN> -
PyObject *
PyBlitzArrayCxx_AsNumpy(blitz::Array<T, N> &a)¶ Builds a new writeable
numpy.ndarrayobject from the given Blitz++ array without copying the data. Returns a new reference.In fact, it actually calls two of the above mentioned functions
PyBlitzArrayCxx_NewFromArray()andPyBlitzArray_NUMPY_WRAP():PyBlitzArray_NUMPY_WRAP(PyBlitzArrayCxx_NewFromArray(a));
Other Utilities¶
-
template<typename
T, intN> -
blitz::Array<T, N> *
PyBlitzArrayCxx_AsBlitz(PyBlitzArrayObject *o)¶ Casts a
PyBlitzArrayObjectto a specificblitz::Array<>type. Notice this is a brute-force cast. You are responsible for checking if that it is correct.
-
template<typename
T, intN> -
blitz::Array<T, N> *
PyBlitzArrayCxx_AsBlitz(PyBlitzArrayObject *o, const char *name)¶ Casts a
PyBlitzArrayObjectto a specificblitz::Array<>type after checking that the dimensions and the data type of the underlyingPyBlitzArrayObjectfits to the template parameters. If the check fails, an Python error is set, using the givennameparameter as the name of the object that was passed to the python function, andNULLis returned. Hence, please check the result of this function forNULL:// ... PyBlitzArrayObject* data; if (!PyArg_ParseTupleAndKeywords(..., data, ...)) return NULL; // use safe reference counting auto _ = make_safe(data); // get the blitz array; returns NULL on failure blitz::Array<double,2>* array = PyBlitzArrayCxx_AsBlitz<double,2>(data, "data"); // check for NULL if (!array) // The error message has already been set, so we can simply return NULL return NULL; // ...
Note
If you need to check for several data types and/or dimensions, use the first version of this function and perform the checks by hand.
Note
This version of the function might be slightly slower than the first version.
-
template<typename
T> -
int
PyBlitzArrayCxx_CToTypenum()¶ Converts from C/C++ type to ndarray type_num.
We cover only simple conversions (i.e., standard integers, floats and complex numbers only). If the input type is not convertible, an exception is set on the Python error stack. You must check
PyErr_Occurred()after a call to this function to make sure things are OK and act accordingly. For example:int typenum = PyBlitzArrayCxx_CToTypenum<my_weird_type>(obj); if (PyErr_Occurred()) return 0; ///< propagate exception
-
template<typename
T> -
T
PyBlitzArrayCxx_AsCScalar(PyObject *o)¶ Extraction API for simple types.
We cover only simple conversions (i.e., standard integers, floats and complex numbers only). If the input object is not convertible to the given type, an exception is set on the Python error stack. You must check
PyErr_Occurred()after a call to this function to make sure things are OK and act accordingly. For example:auto z = extract<uint8_t>(obj); if (PyErr_Occurred()) return 0; ///< propagate exception
-
template<typename
T> -
PyBlitzArrayCxx_FromCScalar(T v)¶ Converts simple C types into numpy scalars
We cover only simple conversions (i.e., standard integers, floats and complex numbers only). If the input object is not convertible to the given type, an exception is set on the Python error stack and
0(NULL) is returned.