«  Regression Tree Class   ::   Contents   ::   SOMz: Self Organizing Maps and random atlas  »

Classification Trees Class

This is the TPZ.Ctree class in some detail, refer to the source code for mode information and methods.

Module author: Matias Carrasco Kind

class TPZ.Ctree(X, Y, minleaf=4, forest='yes', mstar=2, dict_dim='', impurity='entropy', nclass=array([0, 1]))

Creates a classification tree class instance

Parameters:
  • X (float or int array, 1 row per object) – Preprocessed attributes array (all columns are considered)
  • Y (int array) – Attribute to be predicted
  • minleaf (int, def = 4) – Minimum number of objects on terminal leaf
  • forest (str, ‘yes’/’no’) – Random forest key
  • mstar (int) – Number of random subsample of attributes if forest is used
  • impurity – ‘entropy’/’gini’/’classE’ to compute information gain
  • nclass (int array) – classes array (labels)
  • dict_dim (dict) – dictionary with attributes names
get_branch(line)

Same as Rtree.get_branch()

get_vals(line)

Same as Rtree.get_vals()

leaves()

Same as Rtree.leaves()

leaves_dim()

Same as Rtree.leaves_dim()

plot_tree(itn=-1, fileout='TPZ', path='', save_png='no')

Same as Rtree.plot_tree()

print_branch(branch)

Same as Rtree.print_branch()

save_tree(itn=-1, fileout='TPZ', path='')

Same as Rtree.save_tree()

«  Regression Tree Class   ::   Contents   ::   SOMz: Self Organizing Maps and random atlas  »