Welcome to yellowbrick’s documentation!

Yellowbrick is a suite of visual analysis and diagnostic tools to facilitate feature selection, model selection, and parameter tuning for machine learning. All visualizations are generated in Matplotlib.

Custom yellowbrick visualization tools include:

Tools for feature analysis and selection

  • Boxplots (“box-and-whisker” plots)
  • Violinplots
  • Histograms
  • Scatter plot matrices (“sploms”)
  • Radial visualizations (“radviz”)
  • Parallel coordinates
  • Jointplots
  • Rank 1D
  • Rank 2D

Tools for model evaluation

Classification

  • ROC-AUC curves
  • Classification heatmaps
  • Class balance charts

Regression

  • Prediction error plots
  • Residual plots
  • Most informative features

Clustering

  • Silhouettes
  • Density measures

Tools for parameter tuning

  • Validation curves
  • Gridsearch heatmap

Contents:

Indices and tables