Table Of Contents

Commands model:linear_regression/train

[ALPHA] Build linear regression model.

POST /v1/commands/

GET /v1/commands/:id

Request

Route

POST /v1/commands/

Body

name:

model:linear_regression/train

arguments:

model : Model

<Missing Description>

frame : Frame

A frame to train the model on.

label_column : unicode

Column name containing the label for each observation.

observation_columns : list

List of column(s) containing the observations.

intercept : bool (default=True)

Flag indicating if the algorithm adds an intercept. Default is true.

num_iterations : int32 (default=100)

Number of iterations for SGD. Default is 100.

step_size : float64 (default=1.0)

Initial step size for SGD optimizer for the first step. Default is 1.0.

reg_type : unicode (default=None)

Regularization “L1” or “L2”. Default is “L2”.

reg_param : float64 (default=0.01)

Regularization parameter. Default is 0.01.

mini_batch_fraction : float64 (default=1.0)

Set fraction of data to be used for each SGD iteration. Default is 1.0; corresponding to deterministic/classical gradient descent.


Headers

Authorization: test_api_key_1
Content-type: application/json

Description

Creating a LinearRegression Model using the observation column and target column of the train frame


Response

Status

200 OK

Body

Returns information about the command. See the Response Body for Get Command here below. It is the same.

GET /v1/commands/:id

Request

Route

GET /v1/commands/18

Body

(None)

Headers

Authorization: test_api_key_1
Content-type: application/json

Response

Status

200 OK

Body

dict

Trained linear regression model