Models LinearRegressionModel¶
-
class
LinearRegressionModel
¶ Entity LinearRegressionModel
Attributes
last_read_date Read-only property - Last time this model’s data was accessed. name Set or get the name of the model object. status Read-only property - Current model life cycle status. Methods
__init__(self[, name, _info]) Create a ‘new’ instance of a Linear Regression model. predict(self, frame[, observation_columns]) [ALPHA] Make new frame with column for label prediction. train(self, frame, label_column, observation_columns[, intercept, ...]) [ALPHA] Build linear regression model.
-
__init__
(self, name=None)¶ Create a ‘new’ instance of a Linear Regression model.
Parameters: name : unicode (default=None)
User supplied name.
Returns: : Model
A new instance of LinearRegressionModel
Linear Regression [R21] is used to model the relationship between a scalar dependent variable and one or more independent variables. The Linear Regression model is initialized, trained on columns of a frame and used to predict the value of the dependent variable given the independent observations of a frame. This model runs the MLLib implementation of Linear Regression [R22] with the SGD [R23] optimizer.
footnotes
[R21] https://en.wikipedia.org/wiki/Linear_regression [R22] https://spark.apache.org/docs/1.5.0/mllib-linear-methods.html#linear-least-squares-lasso-and-ridge-regression [R23] https://en.wikipedia.org/wiki/Stochastic_gradient_descent Examples
Consider the following model trained and tested on the sample data set in frame ‘frame’.
Consider the following frame containing two columns.
>>> frame.inspect() [#] x1 y ============== [0] 0.0 0.0 [1] 1.0 2.5 [2] 2.0 5.0 [3] 3.0 7.5 [4] 4.0 10.0 [5] 5.0 12.5 [6] 6.0 15.0 [7] 7.0 17.5 [8] 8.0 20.0 [9] 9.0 22.5
>>> model = ta.LinearRegressionModel() [===Job Progress===] >>> model.train(frame, "y", ["x1"], intercept=True, num_iterations=100) [===Job Progress===] >>> predicted_frame = model.predict(frame, ["x1"]) [===Job Progress===] >>> predicted_frame.inspect() [#] x1 y predicted_value ================================== [0] 0.0 0.0 -3.74940273364e+55 [1] 1.0 2.5 -2.72603544372e+56 [2] 2.0 5.0 -5.07713061407e+56 [3] 3.0 7.5 -7.42822578442e+56 [4] 4.0 10.0 -9.77932095478e+56 [5] 5.0 12.5 -1.21304161251e+57 [6] 6.0 15.0 -1.44815112955e+57 [7] 7.0 17.5 -1.68326064658e+57 [8] 8.0 20.0 -1.91837016362e+57 [9] 9.0 22.5 -2.15347968065e+57