Table Of Contents

VertexFrame copy


copy(self, columns=None, where=None, name=None)

Create new frame from current frame.

Parameters:

columns : str | list of str | dict (default=None)

If not None, the copy will only include the columns specified. If dict, the string pairs represent a column renaming, {source_column_name: destination_column_name}

where : function (default=None)

If not None, only those rows for which the UDF evaluates to True will be copied.

name : str (default=None)

Name of the copied frame

Returns:

: Frame

A new Frame of the copied data.

Copy frame or certain frame columns entirely or filtered. Useful for frame query.

Examples

>>> frame
Frame "example_frame"
row_count = 4
schema = [name:unicode, age:int32, tenure:int32, phone:unicode, adult_years:int32, of_age:float32, of_adult:float32, tenured_name:unicode, tenured_name_age:unicode]
status = ACTIVE  (last_read_date = -etc-)

>>> frame2 = frame.copy()  # full copy of the frame
[===Job Progress===]

>>> frame3 = frame.copy(['name', 'age'])  # copy only two columns
[===Job Progress===]
>>> frame3
Frame  <unnamed>
row_count = 4
schema = [name:unicode, age:int32]
status = ACTIVE  (last_read_date = -etc-)
>>> frame4 = frame.copy({'name': 'name', 'age': 'age', 'tenure': 'years'},
...                     where=lambda row: row.age > 40)
[===Job Progress===]
>>> frame4.inspect()
[#]  name      age  years
=========================
[0]  Thurston   65     26
[1]  Judy       44     14